• Title/Summary/Keyword: Movement Stability

Search Result 691, Processing Time 0.035 seconds

Reinforcement Effect of Marine Structure Foundation by Deep Mortar Piling (심층몰탈파일에 의한 호안구조물의 기초보강 효과)

  • Chun, Byung-Sik;Yang, Hyung-Chil;Yang, Jin-Suk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.41-50
    • /
    • 2001
  • In this study, for the stability analysis of marine embankment, the slope stability analysis and possibility of lateral movement with the marine embankment in ${\bigcirc}{\bigcirc}$harbor were carried out. In order to simulate the practical site condition, the expected maximum sea water level and maximum embankment height were assumed for these analyses. For the evaluation of soil properties, field test, laboratory test, and especially chemical composition analysis were performed for the this analysis. Based on these test results, the soil parameters were determined by applying ground improvement concept under columnar stabilized ground condition and also the effect of staged backfilling was considered under the dredged ground condition. For the optimal design, the stability analyses of embankment with changed height and unchanged height were performed under unimproved soil condition. The result showed that both cases were unstable not only with slope stability but also with lateral movement. Therefore, Deep Mortar Piling was applied for stability analysis and this result was safe. As the conclusion, the deep mortar piling method was suggested as reinforced foundation design for this site.

  • PDF

The Effect of Training Program for the Balance on the Gait Stability (균형능력 향상 운동프로그램이 보행안정성에 미치는 영향)

  • Lee, Young-Taeck;Kim, Hoon;Shin, Hak-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.373-380
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of balance training on gait stability. The study population included 17 male high school students who were divided into 3 groups, each of which underwent one of the following types of balance-training programs for 8 weeks: 1 foot standing on cushion foam, trunk muscle training, and inverted body position training. 0, 4, and 8 weeks, the following experiment was performed: The participants were asked to close their eyes and take 17 steps; the stability of forward and sideward movement was determined, and the direction linearity was measured. The results revealed that all the training programs caused a decrease in stride deviation and an increase in the and the stride length, thereby improving the stability of forward movement. All the programs decreased the variation in step width and were thus also effective in improving the stability of sideward movement. The inverted body position training program was considered very effective because the cross point appeared on post hoc graphic analysis after 4 weeks, and the deviation length for 10 m was low, i.e., below 4 cm. All the programs were effective with respect to direction linearity because they decreased the deviation in direction widths. The results indicate that whole-body neurocontrol training is more effective than simple muscle training and local focused balance training, although this neurocontrol training-in the form of inverted body position training-required a longer training period than did the other programs.

Effects of self stretching exercise and movement with mobilization in lunge position on the muscle activity and balance in chronic stroke patients (런지자세에서의 자가 신장운동과 능동운동을 동반한 가동술이 만성 뇌졸중 환자의 근활성도 및 균형에 미치는 영향)

  • Jeong, Yong-Sik
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.549-556
    • /
    • 2013
  • In this study, we investigated the effects of stretching and movement with mobilization in lunge position on the muscle activity of the lower limb and limited of stability in chronic stroke patients with hemiplegia. Sixteen subjects were randomly selected and classified into the experimental and control groups. The experimental group performed self stretching exercises in the lunge position, and in the control group performed movement with mobilization in the lunge position. The interventions were conducted for 20 min, 5 times a week for 8 weeks. Statistical analyses were performed using repeated ANOVA. The analysis results showed no statistically significant between-group differences with respect to the muscle activity(%MVIC;maximum voluntary isometric contraction) of lower limb and limited of stability(LOS)(p>.05). However, statistically significant within-group differences were observed in the maximum voluntary isometric contraction and limited of stability for both the groups (p<.05). Therefore, self stretching in the lunge position is considered to have positive influences on the muscle strength and balance in stroke patients with hemiplegia.

The Immediate Effects of Elastic Taping on Center of Pressure and Foot Pressure Distribution

  • Jung-Hee Kim;Jong-Ho Kook;Sang-Mi Lee;Eun-Bin Ko;Song-Yi Han;Yeon-Jeong Kim;Byeong-Jun Min
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • Purpose: Ankle instability is a common issue in both daily activities and sports, often leading to recurrent injuries. Elastic taping is a non-pharmacological intervention used to improve ankle stability. This study aimed to investigate the immediate effects of elastic taping on ankle stability, center of pressure (COP) movement, and foot pressure distribution. Methods: A single-group pre-posttest design was employed, with 30 participants included in the study. Plantar pressure and COP parameters were measured before and after the application of elastic taping. Taping was administered in three distinct patterns to enhance ankle stability. Results: Immediate effects of elastic taping were evident in COP parameters. Following taping application, there was a significant decrease in COP total displacement, COP area, and COP velocity. However, no significant changes were observed in plantar pressure parameters. Conclusion: The application of elastic taping in this study demonstrated immediate effects on ankle stability and COP parameters, indicating its potential as a viable intervention for improving balance. Further research with larger sample sizes and long-term follow-up is needed to elucidate the sustained effects of elastic taping on ankle stability.

A Study on Lateral Movement of Bridge Abutment on Soft Ground (연약지반상 교대의 측방이동에 관한 연구)

  • 홍원표;한중근
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.53-66
    • /
    • 1994
  • In case of using pile foundation to support bridge abutments on soft ground, the soft ground often causes serious troubles such as lateral movement of the bridge abutments. The foundation piles in soil undergoing lateral movement is one of the typical passive piles. However, Generally, on design of the piles for abutments, the piles have not been considered as a passive piles; sofar:. Because it is difficult to assess the effect of the lateral movement on the desigin and reasonable design method is not established yet. In this study, several abutments, of which lateral movement was taken place, was investigated. Based on the investigation a criterion was presented to assess the lateral movement of the soft soil under backfill for abutment. By use of the criterion, the lateral movement of abutment could be predicted. As the results of thin study, it was anon that the lateral movement of abutment could be occured when the safety factor of slope stability is lese than either 1.5(without the pile effect) or 1.8 (with the pile effect). Especially, excessive lateral movements were occurred when the safety factor of slope stability is less than either 1.0(without the pile effect) or 1.1 (with the pile effect).

  • PDF

Ground Response Curve for Ground Movement Analysis of Tunnel (지반응답곡선을 이용한 터널의 지반거동 분석)

  • Lee, Song;Ahn, Sung-Hak;Ahn, Tae-Hun;Kong, Sung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.244-252
    • /
    • 2002
  • We must notice ground movement by excavation for reasonable tunnel designs. The convergence confinement method is an attempt to evaluate tunnel stability conditions by means of a mathematical model and a ground response curve. In this study, the convergence confinement method by numerical model was examined. This method don't need the basic assumptions for a mathematical model of circular tunnel shape, and hydrostatic in situ stress. Also modified ground response curve that is calculated after installing the support, is suggested, which informs us the ground movement mechanism. The ground response curve and the support reaction curve are mutually dependent. Especially the support reaction curve depends upon the ground response curve. The mechanism of tunnel must be analyzed by the interaction between support and ground. Consequently the stability of tunnel must be qualitatively investigated by a ground response curve and quantitatively adjudged by a numerical analysis for the reasonable design of tunnel.

Zigzag Gait Planning of n Quadruped Walking Robot Using Geometric Search Method (기하학적 탐색을 이용한 4각 보행로봇의 지그재그 걸음새 계획)

  • Park, Se-Hoon;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.142-150
    • /
    • 2002
  • This paper presents a systematic method of the zigzag gait planning for quadruped walking robots. When a robot walks with a zigzag gait, its body is allowed to move from side to side, while the body movement is restricted along a moving direction in conventional continuous gaits. The zigzag movement of the body is effective to improve the gait stability margin. To plan a zigzag gait in a systematic way, the relationship between the center of gravity(COG) and the stability margin is firstly investigated. Then, new geometrical method is introduced to plan a sequence of the body movement which guarantees a maximum stability margin as well as monotonicity along a moving direction. Finally, an optimal swing-leg sequence is chosen for a given arbitrary configuration of the robot. To verify the proposed method, computer simulations have been performed for both cases of a periodic gait and a non-periodic gait.

Effects of Changes in Illumination Level and Slope on Fall-Related Biomechanical Risk Factors While Walking for Elderly Women (조도와 주로 변화가 노인 여성 보행 시 낙상 관련 운동역학적 위험요인에 미치는 영향)

  • Jeon, Hyun-Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.413-421
    • /
    • 2015
  • Objective : The purpose of this study was to investigate biomechanical changes of the lower limb including dynamic stability with changes in illumination (300Lx, 150Lx, and 5Lx) and slope (level and $15^{\circ}$ downhill) as risk factors for elderly falls. Method : Fifteen elderly females were selected for this study. Seven infrared cameras (Proreflex MCU 240: Qualisys, Sweden) and an instrumented treadmill (Bertec, USA) surrounded by illumination regulators and lights to change the levels of illumination were used to collect the data. A One-Way ANOVA with repeated measures using SPSS 12.0 was used to analyze statistical differences by the changes in illumination and slope. Statistical significance was set at ${\alpha}=.05$. Results : No differences in the joint movement of the lower limbs were found with changes in illumination (p>.05). The maximum plantar flexion movement of the ankle joints appeared to be greater at 5Lx compared to 300Lx during slope gait (p<.05). Additionally, maximum extension movement of the hip joints appeared to be greater at 5Lx and 150Lx compared to 300Lx during slope gait (p<.05). The maximum COM-COP angular velocity (direction to medial side of the body) of dynamic stability appeared to be smaller at 150Lx and 300Lx compared to 5Lx during level gait (p<.05). The minimum COM-COP angular velocity (direction to lateral side to the body) of dynamic stability appeared smaller at 150Lx compared to 5Lx during level gait (p<.05). Conclusion : In conclusion, elderly people use a stabilization strategy that reduces walk speed and dynamic stability as darkness increases. Therefore, the changes in illumination during gait induce the changes in gait mechanics which may increase the levels of biomechanical risk in elderly falls.

A Study on the Variations of Stability and Heat Budget in the Planetary Boundary Layer at Kimhae (김해지방의 지표경계층내의 열수지 및 안정도 변화에 관한 연구)

  • 박종길;이화운;김유근;이순환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.103-113
    • /
    • 1997
  • The research described in this paper was conducted to estimate the stability and heat budget in planetary boundary layer (PBL) at Kimhae. The upper air observation was carried out during period from 3 Februsry 1993 to 5 February 1993 at Kimhae. The surface observation data used the one during period from 1 April 1994 to 31 March 1995. The maximum height of inversion layer observed at Kimhae was 310 m. Destruction of the inversion was simultaneously occurred at the surface and the mid-layer (200 $\sim$ 300 m), however the origin of destruction is different each other. The surface inversion is destructed by surface heating owing to growing radiation in surface but disappearance of the mid-layer inversion is related to the upper cold air movement.

  • PDF

Effect on the Limit of Stability of the Lowered Center of Mass With a Weight Belt

  • Phan, Jimmy;Wakumoto, Kaylen;Chen, Jeffrey;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.27 no.2
    • /
    • pp.155-161
    • /
    • 2020
  • Background: The consequences of falls are often debilitating, and prevention is important. In theory, the lower the center of mass (COM), the greater postural stability during standing, and a weight belt at the waist level may help to lower the COM and improve the standing balance. Objects: We examined how the limit of stability (LOS) was affected by the lowered center of mass with the weight belt. Methods: Twenty healthy individuals participated in the LOS test. After calculating each participant's COM, a weight belt was fastened ten centimeters below the COM. Trials were acquired with five weight belt conditions: 0%, 2%, 4%, 6%, and 8% of body weight. Outcome measures included reaction time, movement velocity, endpoint excursion, maximum excursion, and directional control in 4 cardinal moving directions. Results: None of our outcome variables were associated with a weight belt (p > 0.075), but all of them were associated with moving direction (p < 0.01). On average, movement velocity of the COM and maximum excursion were 31% and 18% greater, respectively, in mediolateral than anteroposterior direction (5.4°/s vs. 4.1°/s; 97.5% vs. 82.6%). Conclusion: Our results suggest that postural stability was not affected by the weight-induced lowered COM, informing the development and improvement of balance training strategies.