• Title/Summary/Keyword: Mouse immune cells

Search Result 631, Processing Time 0.025 seconds

Comparison of Immuno-Suppressive Activities of Pinitol Isolated from Soybean (콩으로부터 추출한 Pinitol의 면역억제 활성 비교)

  • Park, Chul-Hong;Heo, Jin-Chul;Nam, Dong-Yun;Lee, Si-Rim;Nam, So-Hyun;Son, Min-Sik;Hwang, Young-Hyun;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.449-453
    • /
    • 2009
  • The experiment was conducted to validate anti-inflammatory effects of pinitol from bean. It was evaluated for some molecule targets by wound healing assay and RT-PCR. The results of wound healing assay was shown dose-dependent inhibition of cell migration in cancer cells and inhibited RNA expression of ICAM-1, CD 44, MMP-17, MMP-14 and ARF2. Immune suppression activity in a mouse provoked by DNFB observed that inflammatory reaction with pinitol were reduced ear swelling and inflammatory cells infiltration in mouse atopic models. The result confirmed that pinitol have the effect of dose-dependent immune suppression activity.

Effects of Zinc Deficiency on Immune Response in Mouse (식이 아연이 Mouse의 면역 반응에 미치는 영향에 관한 연구)

  • 명춘옥
    • Journal of Nutrition and Health
    • /
    • v.21 no.2
    • /
    • pp.113-121
    • /
    • 1988
  • The purpose of this study was to investigate the effects of dietary zinc on immune response in mice. Weanling male mice was placed individually in stainless steel cages and fed a zinc dificient diet and control diet. All mice were given deionized water ad libitum. The introduction of extraneous zinc was minimized in all cage by washing feed jars and water bottles sequentially with 4mM EDTA and conc-nitiric acid followed by deionized water. After 4 and 5 weeks of the diets, mice were immunized with lx 106 Naegleria fowleri intraperitoneally. Mice were weighed once a week. The results from this study are summarized as followed ; 1) Mice fed the zinc dificient diet showed growth retardation. After 3 weeks of diets, mean body weight of zinc deficient mice was 21.4g and that of control was 25.0g. This difference is singnificant statistically (p<0.01). The more time passed, the more remarkable difference was found. 2) The weigth of organs were measured on liver, kidney, spleen, thymus, heart, lung, brain. Difference in weight were observed only in liver and spleen. 3) Proliferative response of spleen cells of zinc deficient mice to con A was lower than that of control mice after one week on immunization(p<0.005). 4) Stimulation index was lower in zinc deficient mice to phytohemagglutinin after two weeks on immunization (p<0.05). 5) Blastogenesis of speen cells of zinc deficient mice to Naegleria fowleric lysate was lower after 10 days on immunization (p<0.05). 6) Immunoglobulin G antribody titers of zinc deficient mice sera by ELISA was lowered to control mice after 5 weeks on immunization (p<0.005).

  • PDF

CD72 is a Negative Regulator of B Cell Responses to Nuclear Lupus Self-antigens and Development of Systemic Lupus Erythematosus

  • Takeshi Tsubata
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2019
  • Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease characterized by production of autoantibodies to various nuclear antigens and overexpression of genes regulated by IFN-I called IFN signature. Genetic studies on SLE patients and mutational analyses of mouse models demonstrate crucial roles of nucleic acid (NA) sensors in development of SLE. Although NA sensors are involved in induction of antimicrobial immune responses by recognizing microbial NAs, recognition of self NAs by NA sensors induces production of autoantibodies to NAs in B cells and production of IFN-I in plasmacytoid dendritic cells. Among various NA sensors, the endosomal RNA sensor TLR7 plays an essential role in development of SLE at least in mouse models. CD72 is an inhibitory B cell co-receptor containing an immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic region and a C-type lectin like-domain (CTLD) in the extracellular region. CD72 is known to regulate development of SLE because CD72 polymorphisms associate with SLE in both human and mice and CD72-/- mice develop relatively severe lupus-like disease. CD72 specifically recognizes the RNA-containing endogenous TLR7 ligand Sm/RNP by its extracellular CTLD, and inhibits B cell responses to Sm/RNP by ITIM-mediated signal inhibition. These findings indicate that CD72 inhibits development of SLE by suppressing TLR7-dependent B cell response to self NAs. CD72 is thus involved in discrimination of self-NAs from microbial NAs by specifically suppressing autoimmune responses to self-NAs.

Effect of Immune System on Retrovirus-Mediated Herpes Simplex Virus Thymidine Kinase Gene Therapy (면역체계가 Retroviral Vector로 이입한 Herpes Simplex Virus Thymidine Kinase 유전자치료에 미치는 영향)

  • Park, Jae-Yong;Joo, So-Young;Chang, Hee-Jin;Son, Ji-Woong;Kim, Kwan-Young;Kim, Keong-Seok;Kim, Chang-Ho;Park, Jae-Ho;Lee, Jong-Ki;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.229-240
    • /
    • 1999
  • Background: The impact of the immune response on cancer gene therapy using viral vectors to deliver a "suicide gene" is currently unclear. A vigrous immune response targeted at viral proteins or transgene may enhance the efficacy of tumor destruction and even augment responses to tumor antigens. These responses may involve the release of cytokines and stimulation of tumor specific cytotoxic T-lymphocytes that enhance therapeutic efficacy. On the other hand, a vigorous rapid cellular immune response may destroy cells expressing the therapeutic gene and attenuate the response to therapy. Furthermore, development of neutralizing antibody responses may prevent readministration of virus, a potentially significant limitation. Evaluating the significance of these limitations in animal models and developing solutions are therefore of obvious importance. Methods: After retroviral transduction of mouse mesothelioma cell line(AB12) with Herpes Simplex Virus thymidine kinase (HSVtk) gene in vitro, subcutaneous flank tumors were established. To study the effect of intact immune system on efficacy of tumor erradication, the ability of the HSVtk/ganciclovir system to inhibit tumor growth was compared among normal Balb/c mice, immunodeficient Balb/c-nude and SCID mice, and Balb/c mice immunosuppressed with cyclosporin. Results: Ganciclovir treatment resulted in greater inhibition of tumor growth in Balb/c mice compared with immunodeficient Balb/c-nude mice and SCID mice(in immunodeficient mice, there were no growth inhibition by ganciclovir treatment). Ganciclovir treatment resulted in greater inhibition of tumor growth in noncyclosporin (CSA) treated Balb/c mice compared with CSA treated Balb/c mice. On day 8, mean ganciclovir-treated tumor volume were 65% of control tumor volume in Balb/c mice versus 77% control tumor volume in CSA-treated Balb/c mice. This effect was still evident during therapy (day 11 and 13). On day 13, non-CSA treated tumor volume was 35% of control tumor volume versus 60% of control tumor volume in CSA treated Balb/c mice. Duration of expression of HSVtk was not affected by the immunosuppression with CSA. Conclusion: These results indicate that the immune responses against retrovirally transduced cells enhance the efficacy of the HSVtk/ganciclovir system. These findings have important implications for clinical trials using currently available retrovirus vectors as well as for future vector design.

  • PDF

Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

  • Oh, Su-Jin;Ryu, Chung-Kyu;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.383-389
    • /
    • 2011
  • Background: EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods: C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of cytokine secretion. Normal myeloid-dendritic cell (DC) was ex vivo cultured from bone marrow hematopoietic stem cells of C57BL/6 mice with GM-CSF and IL-4 to analyze the DC uptake of dead tumor cells and to observe the effect of EY-6 on the normal DC. Results: EY-6 killed the MC38 tumor cells in a dose dependent manner (25, 50 and $100{\mu}M$) with carleticulin induction. And EY-6 induced the secretion of IFN-${\gamma}$ but not of TNF-${\alpha}$ from the MC38 tumor cells. EY-6 did not kill the ex-vivo cultured DCs at the dose killing tumor cells and did slightly but not significantly induced the DC maturation. The OVA-specific cross-presentation ability of DC was not induced by chemical treatment (both MHC II and MHC I-restricted antigen presentation). Conclusion: Data indicate that the EY-6 induced tumor cell specific and immunological cell death by modulation of tumor cell phenotype and cytokine secretion favoring induction of specific immunity eliminating tumor cells.

PD-1 Expression in LPS-Induced Raw264.7 Cells Is Regulated via Co-activation of Transcription Factor NF-κB and IRF-1 (Lipopolysaccharide 유도된 Raw264.7 세포주에서 전사조절인자 NF-κB와 IRF-1의 공동작용에 의해 조절되는 PD-1 발현연구)

  • Choi, Eun-Kyoung;Lee, Soo-Woon;Lee, Soo-Woong
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.301-308
    • /
    • 2013
  • Programmed Death-1 (PD-1) is one of the important immune-inhibitory molecules which was expressed in T cells, B cells, NKT cells, and macrophages activated by various immune activating factors. Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is one of the crucial immunogens for PD-1 expression. However, there are only a few reports on the expression mechanisms of PD-1 in innate immune cells. In this study, we investigate the expression mechanisms of PD-1 in LPS-stimulated Raw264.7 cell lines by RT-PCR, Western Blot, flow cytometry as well as ChIP assay and co-immunoprecipitation. When Raw264.7 cells were stimulated with LPS, PD-1 expression was greatly up-regulated via PI3K and p38 signaling. Primary macrophages isolated from LPS-injected mice were also shown the increased expression of PD-1. In promoter assay, NF-${\kappa}B$ and IRF-1 binding regions in mouse PD-1 promoter are important for PD-1 expression. We also found that the co-activation of NF-${\kappa}B$ and IRF-1 is indispensable for the maximum PD-1 expression. These results indicate that the modulation of PD-1 expressed in innate immune cells could be a crucial for the disease therapy such as LPS-induced mouse sepsis model.

Therapeutic Effects of Yijungtang on Atopic Dermatitis-like Skin Lesions of NC/Nga Mouse Induced by Mite Antigen (이중탕(理中湯)이 Mite Antigen으로 유발된 NC/Nga 생쥐의 아토피 피부염에 미치는 영향)

  • Seo, Hui-Yeon;Han, Jae-Kyung;Kim, Yun-Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.1-27
    • /
    • 2011
  • Objectives: The purpose of this study is to investigate the effects of Yijungtang(YJT) on atopic dermatitis in an in-vitro and in-vivo experiment using a RBL-2H3 mast cells and a NC/Nga atopic dermatitis mouse. Methods: In-vitro experiment, IL-4, IL-13 mRNA expression were evaluated by a real-time PCR, IL-4, IL-13 production by ELISA and transcription factor as GATA-1, GATA-2, NF-AT1, NF-AT2, AP-1 and NF-kB by western blotting. In-vivo experiment, clinical skin score we evaluated by, hematology and Serum total IgE and IgG1 of NC/Nga atopic dermatitis mouse, cytokine level, total number of cell, Immunohistochemical staining and Histological features of auxiliary lymph node(ALN), draining lymph node(DLN), peripheral blood mononuclear cells(PBMCs) and dorsal skin tissue in NC/Nga mouse. Results: YJT decreased IL-4, IL-13 mRNA expression, IL-4, IL-13 production and prominently decreased the expression of mast cell specific transcription factors including GATA-2, NF-AT2, c-Fos and NF-kB. YJT oral administration reduced the levels of skin severity scores. It also decreased the level of inflammatory cytokines such as IL-5, IL-13, histamine and IgE in the serum. It elevated IFN-gamma level in the spleenocyte culture supernatant but decreased. $CD3e^+$, $CD19^+$, $CD4^+$, $CD8^+$, $CD3e^+CD69^+$, $CD11b^+Gr-1^+$, $CCR3^+$ in the PBMCs, $CD4^+$, $CD8^+$, $CD3e^+CD69^+$, $B220^+CD23^+$ in the ALN, $CD4^+$, $CD3e^+CD69^+$ in the ALN and $CD4^+$, $CD11b^+Gr-1^+$ in the dorsal skin. Histological examination showed that infiltration levels of immune cells in the skin of AD-induced NC/Nga mice were much improved by YJT oral administration. Conclusions: The anti-allergic activities of YJT may be mediated by down-regulation of Th2 cytokines, such as IL-4 and IL-13, through the regulation GATA-2, NF-AT2 and NF-kB transcription factors in mast cells. YJT would be regulate molecular mediators and immune cells which are functionally associated with atopic dermatitis induced in NC/Nga mice, and may play an important role in recovering AD symptoms.

Effects of Pre-conditioning dose on the Immune Kinetics and Cytokine Production in the Leukocytes Infiltrating GVHD Tissues after MHC-matched Transplantation

  • Choi, Jung-Hwa;Yoon, Hye-Won;Min, Chang-Ki;Choi, Eun-Young
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.68-78
    • /
    • 2011
  • Background: Graft-versus-host disease (GVHD) is a huddle for success of hematopoietic stem cell transplantation. In this study, effects of irradiation dose on immune kinetics of GVHD were investigated using B6 ${\rightarrow}$ BALB.B system, a mouse model for GVHD after MHC-matched allogeneic transplantation. Methods: BALB.B mice were transplanted with bone marrow and spleen cells from C57BL/6 mice after irradiation with different doses. Leukocytes residing in the peripheral blood and target organs were collected periodically from the GVHD hosts for analysis of chimerism formation and immune kinetics along the GVHD development via flow cytometry. Myeloid cells were tested for production of IL-17 via flow cytometry. Results: Pre-conditioning of BALB.B hosts with 900 cGy and 400 cGy resulted in different chimerism of leukocytes from the blood and affected survival of GVHD hosts. Profiles of leukocytes infiltrating GVHD target organs, rather than profiles of peripheral blood leukocytes (PBLs), were significantly influenced by irradiation dose. Proportions of IL-17 producing cells in the infiltrating $Gr-1^+$ or $Mac-1^+$ cells were higher in the GVHD hosts with high does irradiation than those with low dose irradiation. Conclusion: Pre-conditioning dose affected tissue infiltration of leukocytes and cytokine production by myeloid cells in the target organs.

Effects of Cordyceps militaris on Immune Activity (밀리타리스 동충하초(Cordyceps militaris)의 면역 활성에 미치는 영향)

  • Kang, In Soon;Kim, Hyeju;Lee, Tae Ho;Kwon, Yong Sam;Son, Miwon;Kim, Chaekyun
    • YAKHAK HOEJI
    • /
    • v.58 no.2
    • /
    • pp.81-90
    • /
    • 2014
  • In order to determine the functional benefits of Cordyceps militaris in the immune system, we examined the immunomodulatory activities of C. militaris using an immunocompromised C57BL/6 mice, mouse spleen cells, RAW 264.7 macrophage cells, and A549 lung carcinoma cells. Mice were injected intraperitioneally with an immunosuppressive drug, cyclophosphamide, and then administered orally with 30, 100 and 300 mg/kg of 50% ethanol extract of C. militaris (CME 30, CME 100 and CME 300) for 14 days. CME increased splenocyte proliferation and natural killer (NK) cell activity compared to 3% hydroxypropyl methylcellulose-treated control mice. CME also increased the production of Th1 cytokines, IL-2 and TNF-${\alpha}$ in spleen cells isolated from CME-injected mice and in vitro, which suggested the enhanced cellular immunity in response to CME. CME also increased splenocyte proliferation, NK cell activity, and IL-2 and TNF-${\alpha}$ production compared to 1 ${\mu}M$ methotrexate-treated spleen cells in vitro. We examined whether C. militaris regulates the production of inflammatory mediators in LPS-stimulated RAW 264.7 cells. CME inhibited LPS-induced NO production and iNOS expression in a dose dependent manner, while COX-2 expression was remained unchanged. In addition, CME also has free radical scavenging activity, indicating its antioxidant activity. These results indicate that C. militaris enhances immune activity by promoting immune cell proliferation and cytokine production.

Suppression of Spontaneous Dermatitis in Nc/Nga Atopic Model by Gamipaidok-san, a Traditional Herbal Medicine (가미패독산(加味敗毒散) 경구 투여에 의한 Nc/Nga 생쥐의 아토피 피부염 억제 작용)

  • Jin, Ga-Hyun;Jin, Mi-Rim;Choi, Jeung-Mok;Yun, Mi-Young;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.866-874
    • /
    • 2006
  • Atopic dermitiis(AD) is a chronic inflammatory skin disease, which requires safe and effective medicinal therapy. Over production of Th2 cytokines and chemokines as well as IgE, which are mediated by highly activated immune cells, have been considered as pathologic factors in this disease. We found that Gamipaidok-san(GPDS), which is a traditional herbal medicine clinically prescribing for atopic dermitis patients in the hospital, has suppressive effects on the development of DNC8 induced dermatitis in Nc/Nga atopic model. Oral administration of GPDS at the concentration of 250 mg/Kg for 12 weeks significantly suppressed the clinical severity of the dermatitis including pruities, edema, eczematous and dryness. Histological examination revealed that thickness of dermis and epidermis were considerably reduced, and the number of infiltrated inflammatory immune cells including mast cells, CCR3+, and CD4+ T cells were decreased in the affected skin and ear, and consistantly, the number of CD3+/CCR3+ cells in Iymph nodes were decreased. The levels of Th2 cytokines produced by activated splenocyte from atopic mice were also down-regulated by GPDS. Furthermore, the serum levels of IgE were considerably reduced, which accompanied by a decrease in the number of B220+IgE+ B cells in the Iymph nodes. Taken together, these results suggested that oral administration of GPDS, a traditional herbal medicine, has suppressive effects on atopic dermitis of Nc/Nga mouse by the modulation of the immune system, therefore GPDS has potential as a natural therapeutic for treatment of atopic dermatitis.