• Title/Summary/Keyword: Mouse fetus

Search Result 41, Processing Time 0.021 seconds

Expression of Sex-Related Genes in the Fetus of Mouse: 2-Bromopropane and Sex Differentiation (생쥐 태자의 성 관련 유전자 발현: 2-Bromopropane과 성 분화)

  • Choi, Donchan;Lim, Sinae;Kim, Pan Gyi;Kim, Dae-Yong;Lee, Young-Soon
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.107-114
    • /
    • 2001
  • The recent reports that endocrine disruptors(EDs) bring about abnormalities in reproductive organs and functions of invertebrates suggest that mammals be affected by the EDs. The present study examined the influence of 2-bromopropane(2-BP) by looking at the sexes of litters in mouse. The expression of sex-related genes during sex differentiation was also investigated in the fetus of mouse. The male and female mice were infused with 2-BP for 3 weeks before mating. The litters were sexed at the weaning time from the 4 different groups. The sex-related genes were identified by RT-PCR from the fetuses at gestation 10 days. The sequences of the genes were analysed by comparing to those of other animals. The mean numbers of litters survived by the weaning time were slightly reduced in the only group of both female and male mice treated with 2-BP. The female litters were greater than male litters in the only group of female treated with 2-BP. The other groups showed male litters greater than female litters. The sex-related genes, SRY, DAX1, SF1 , and AMH genes were identified and sequenced, showing 416, 466, 326, 389 base pairs, respectively. All of the genes had the homology of 89~90% with rat and 81~92% with human within the range of bases identified. They were expressed at the time of sex determination. Therefore, it appears that 2-BP somewhat affects the reproductive activity of adult mouse. Influence of 2-BP on the reproductive function is expected to be studied through the expression of the sex-related genes.

  • PDF

In Vitro/In Vivo Development of Vitrified Immature Mouse Oocytes (초자화 동결된 생쥐 미성숙란의 체외/체내 발달)

  • Yi, B.K.;Kim, E.Y.;Nam, H.K.;Lee, K.S.;Yoon, S.H.;Park, S.P.;Lim, J.H.
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 1999
  • This study was carried out to investigate in vitro/in vivo development of vitrified-thawed immature mouse oocytes. Immature mouse oocytes were vitrified with EFS40 (40% ethylene glycol, 18% ficoll and 0.5 M sucrose). Thawed oocytes were matured for 16 hr in vitro. Matured oocytes with the first polar body were fertilized with the concentration of 1~2$\times$10$^{6}$ $m\ell$ of epididymal sperm. After fertilization, cleavage ($\geq$ 2-cell) and in vitro/in vivo development rates were examined. $\pi$ Ie results were summarized as follows: in vitro maturation rate of immature mouse oocytes in vitrified-thawed group was similar to that in exposed group (67.5%) and control (66.3%), but cleavage rate of vitrified-thawed oocytes (64.9 %) and blastocyst formation rate (59.0%) were significantly different compared to those of exposed group (83.7 and 74.7%) and control (90.7 and 83.7%) (p<0.05). However, when the blastocysts derived from immature mouse oocytes vitrified-thawed were transferred to pseudopregnant mouse, total implantation (31.3%) was slightly lower than that in control (40.8%), but live fetus formation rate (66.7%)was slightly higher than that in control (58.1%), there was not significantly different. Therefore, when the blastocyts produced in vitro were transferred into recipients, although the development in vitro of oocytes vitrified-thawed was decreased, live fetus formation rate was similar to that of control group. The present results indicate that immature mouse oocytes can be frozen successfully by vitrification with EFS40.

  • PDF

Effect of Co-Culture Mouse Fetal Fibroblast Cell on In Vitro Development of Blastomeres Separated from Mouse Preimplantation Embryos (생쥐 태아 Fibroblast 세포와 공동배양이 초기 생쥐배 분할구의 체외 발생능에 미치는 영향)

  • 김진호;정병헌;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.4
    • /
    • pp.341-346
    • /
    • 1993
  • The development of isolated blastomeres from mammalian preimplantation embryos has been basically studied for the multiplication of embryos from superior animals. Therefore, this study was investigated the effect of co-culture with mouse fetal fibroblast cells(MFFC) on in vitro development of blastomeres from mouse preimplantation embryos. Mature female ICR mice were treated with hormone to induce superovulation and embryos were collected at each 2, 4, and 8-cell stage. Then, after removing zona pellucida with protease, blastomeres were isolated by micropipetting, or reconstituted with different stage blastomere, and incubated for 72 hrs either in T6 or TCM199 or on the monolayer of MFFC, which was prepared with fibroblast cells from 14∼14 day mouse fetus. After incubation, we examined their development rates every day and the nuclei numbers of each blastocyst by Hoechst-33342 staining. In the development rates of blastomeres, there were no significant differences between media but the higher rateswere found in the monolayer of MFFC, regardless of reconsititution. In addition, blastomeres cultured with MFFC had slightly greater number of nuclei than those cultured in single media. Generally, the higher development rates of blastomeres were found from earlier stage embryos than the later ones, regardless of culture conditions. Reconsitituted blastomeres had more nuclei but did not show the higher development rates, compared to the single blastomeres. Taken together, our results suggest that co-culture with MFFC have a beneficial effect on the in vitro development of blastomeres from mouse embryos.

  • PDF

Generation of Embryonic Stem Cell-derived Transgenic Mice by using Tetraploid Complementation

  • Park, Sun-Mi;Song, Sang-Jin;Choi, Ho-Jun;Uhm, Sang-Jun;Cho, Ssang-Goo;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.121-121
    • /
    • 2003
  • The standard protocol for the production of transgenic mouse from ES-injected embryo has to process via chimera producing and several times breeding steps, In contrast, tetraploid-ES cell complementation method allows the immediate generation of targeted murine mutants from genetically modified ES cell clones. The advantage of this advanced technique is a simple and efficient without chimeric intermediates. Recently, this method has been significantly improved through the discovery that ES cells derived from hybrid strains support the development of viable ES mice more efficiently than inbred ES cells do. Therefore, the objective of this study was to generate transgenic mice overexpressing human resistin gene by using tetrapioid-ES cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR and cloned into pCR 2.1 TOPO T-vector and constructed in pCMV-Tag4C vector. Human resistin mammalian expression plasmid was transfected into D3-GL ES cells by lipofectamine 2000, and then after 8~10 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec. (fusion rate : 93.5%) and cultured upto the blastocyst stage (development rate : 94.6%). The 15~20 previously G418-selected ES cells were injected into tetraploid blastocysts, and then transferred into the uterus of E2.5d pseudopregnant recipient mice. To investigate the gestation progress, two El9.5d fetus were recovered by Casarean section and one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, this finding demonstrates that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mouse for the rapid analysis of gene function in vivo.

  • PDF

Effect of Co-Culture with Mouse Fetal Fibroblast Cells and Antibody to Superoxide Dismutase on the Development of MousePreimplantation Embryos (생쥐태아 Fibroblast 세포의 공동배양과 Superoxide Dismutase 항체가 생쥐 초기배의 발달에 미치는 영향)

  • 김진호;정병현;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.4
    • /
    • pp.347-352
    • /
    • 1993
  • This study was designed to develop the in vitro culture systemof mammalian preimplantation embryos. We proposed mouse fetal fibroblast cells (MFFC) from 14∼15 day mouse fetus. Zygotes from superovulated female ICR mice were cultured 96 hrs in simple defined media (T6) or on the monolayer of MFFC. In addition, to evaluate the action of the co-culture of MFFC, various diluted superoxide dismutase antibody (SOD-Ab) was supplemented into the monolayer of MFFC and zygotes were cultrued in presence or absence of SOD-Ab. The developmental rates of zygotes were significantly increased in co-culture with MFFC compared to the control. The rates of zygotes to the 4-cell stage in media treated with EDTA were higher than those cultured in MFFC but the proportions of morula and blastocyst were not differ between EDTA and MFFC. Interestingly blastocysts in co-culture with MFFC possessed as many as blastomere as those developing in vivo, but blastocysts cultured with EDTA had significantly fewer blastomeres. In addition, the treatment of SOD-Ab suppressed the beneficial effect of MFFC. Therefore, our findings suggest that co-cultrue system using MFFC may have an advantage in the development of mouse zygotes as well as embryonic differentiation.

  • PDF

Radioautographical observations of development and appearance of glia cells in brain I. Apperarace of ectodermal glial cell aggregates in rodent brain (뇌신경교세포(腦神經膠細胞) 집단(集團)의 발생(發生)과 이동(移動)에 대한 방사선(放射線) 자기법적(自記法的) 관찰 I, 설치류 뇌(腦)에 외배엽성(外胚葉性) 신경교세포(神經膠細胞) 집단(集團)의 출현(出現)에 대하여)

  • Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.481-487
    • /
    • 1992
  • The present study was designed to investigate the appearance of the congenital aggregates of the ectodermal glial cells in the brain of the normal rodents. The brain samples were taken from mice fetus, juvenile mice, rats and rabbits. The appearance regions of the glial cell aggregates (GCA) were investigated and the cells in the GCA were identified with electron microscope. 1. GCA in the mouse fetus tended to be higher in cell density, larger in size and lower frequency in appearance than juvenile mouse. The regions of higher appearance frequency of GCA in the juveniles of mice, rats and rabbits were ordered as subependymal layer in the collateral trigone of lateral ventricles, molecular layer of the neocortex, inner layer except the molecular layer in the neocortex, cerebral medulla, corpus callosum and hippocampus. Appearance frequency of GCA in the neonatal mice tended to be higher until 5 day after birth, and were markedly decreased on 10 and 15 day after birth. 2. GCA tended to be closed on one side of the blood vessels or neurons but not perivascular or perineuronal appearance. 3. In electron microscophy, GCA were composed of immature oligodendrocytes and astrocytes in the subependymal, and tended to be more mature and loose in the neocortex and to be appended some microglia cells with age. The cells in the GCA of older mice tended to be more mature than in young mice.

  • PDF

In Vitro Development of Vitrified Mouse Expanding/Hatching/Hatched Blastocysts (초자화 동결된 생쥐 팽창/탈출/완전탈출 배반포기배의 체내 발달)

  • 김묘경;김은영;이현숙;이봉경;윤산현;박세필;정길생;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.2
    • /
    • pp.131-137
    • /
    • 1997
  • This study was carried out to investigate the in vivo development rates of vitrified-thawed mouse expanding, hatching and hatched blastoc ysts(BL). In vitro fertilization produced blastocysts were vitrified in EFS40(40% ethylene glycol, 30% Ficoll and 0.3 M sucrose in phosphate buffer saline containing 10% FBS). Expanding a and hatching blastocysts were equilibrated in 20% ethylene glyco](EG) for 5 min. before exposure to EFS40 at 25°C for 1 min., they were then vitrified in liquid nitrogen. Hatched blastocysts which cultured in m-CR1 medium supple mented 0.4% bovine serum albumin on day 5. were equilibrated in 10% EG for 5 min. and then vitrified in EFS40 for 30 sec. After thawing, re-expanding blastocysts were transferred to recipients(3 day of pseudopregnant) on one or both uterine horns(6-8 embryos per a horn). Preg¬n nancy rates of recipients and implantation were a assccessed by autopsy on 15 gestation. The res¬u ults obtained in these experiments were summar¬1 ized as follows; 1) The pregnancy and live fetus rates, for vitrified expanding BL(77.8 and 25.0%) and hatching BL(77.8 and 26.4%)n vitro were not significantly difference in those of control BL (66.7 and 42.9%: 83.3 and 40.4%), respectively, 2) in vitro development of vitrified hatched BL was 34.0%. and 3) in vivo developmental rate of vitrified hatched BL was only 33.3%. These results suggested that proposed rapid vitrification p procedures used EFS40 cryoprotectant can be effectively performed in mouse expanding Ihatching blastocysts and that mouse blastocysts a after being hatched from zona pellucida can be successfully cryopreserved.

  • PDF

Differentiated Human Embryonic Stem Cells Enhance the In vitro and In vivo Developmental Potential of Mouse Preimplantation Embryos

  • Kim, Eun-Young;Lee, Keum-Sil;Park, Se-Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1152-1158
    • /
    • 2010
  • In differentiating human embryonic stem (d-hES) cells there are a number of types of cells which may secrete various nutrients and helpful materials for pre-implantation embryonic development. This study examined whether the d-hES could function as a feeder cell in vitro to support mouse embryonic development. By RT-PCR analysis, the d-hES cells revealed high expression of three germ-layered differentiation markers while having markedly reduced expression of stem cell markers. Also, in d-hES cells, LIF expression in embryo implantation-related material was confirmed at a similar level to undifferentiated ES cells. When mouse 2PN embryos were cultured in control M16 medium, co-culture control CR1aa medium or co-cultured with d-hES cells, their blastocyst development rate at embryonic day 4 (83.9%) were significantly better in the d-hES cell group than in the CR1aa group (66.0%), while not better than in the M16 group (90.7%)(p<0.05). However, at embryonic days 5 and 6, embryo hatching and hatched-out rates of the dhES cell group (53.6 and 48.2%, respectively) were superior to those of the M16 group (40.7 and 40.7%, respectively). At embryonic day 4, blastocysts of the d-hES cell group were transferred into pseudo-pregnant recipients, and pregnancy rate (75.0%) was very high compared to the other groups (M16, 57.1%; CR1aa, 37.5%). In addition, embryo implantation (55.9%) and live fetus rate (38.2%) of the d-hES cell group were also better than those of the other groups (M16, 36.7 and 18.3%, respectively; CR1aa, 23.2 and 8.7%, respectively). These results demonstrated that d-hES cells can be used as a feeder cell for enhancing in vitro and in vivo developmental potential of mouse pre-implantation embryos.

The Question of Abnormalities in Mouse Clones and ntES Cells

  • Wakayama, Teruhiko
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.7-8
    • /
    • 2003
  • Since it was first reported in 1997, somatic cell cloning has been demonstrated in several other mammalian species. On the mouse, it can be cloned from embryonic stem (ES) cells, fetus-derived cells, and adult-derived cells, both male and female. While cloning efficiencies range from 0 to 20%, rates of just 1-2% are typical (i.e. one or two live offspring per one hundred initial embryos). Recently, abnormalities in mice cloned from somatic cells have been reported, such as abnormal gene expression in embryo (Boiani et al., 2001, Bortvin et al., 2003), abnormal placenta (Wakayama and Yanagimachi 1999), obesity (Tamashiro et ai, 2000, 2002) or early death (Ogonuki et al., 2002). Such abnormalities notwithstanding, success in generating cloned offspring has opened new avenues of investigation and provides a valuable tool that basic research scientists have employed to study complex processes such as genomic reprogramming, imprinting and embryonic development. On the other hand, mouse ES cell lines can also be generated from adult somatic cells via nuclear transfer. These 'ntES cells' are capable of differentiation into an extensive variety of cell types in vitro, as well assperm and oocytes in vivo. Interestingly, the establish rate of ntES cell line from cloned blastocyst is much higher than the success rate of cloned mouse. It is also possible to make cloned mice from ntES cell nuclei as donor, but this serial nuclear transfer method could not improved the cloning efficiency. Might be ntES cell has both character between ES cell and somatic cell. A number of potential agricultural and clinical applications are also are being explored, including the reproductive cloning of farm animals and therapeutic cloning for human cell, tissue, and organ replacement. This talk seeks to describe both the relationship between nucleus donor cell type and cloning success rate, and methods for establishing ntES cell lines. (중략)

  • PDF

In Vitro/In Vivo Development of Vitrified Mouse Zygotes and Chromosome Analysis of Offspring (초자화 동결된 생쥐 1-세포기배의 체외/체내 발달과 산자의 염색체 분석)

  • 김묘경;김은영;이현숙;윤산현;박세필;정길생;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.1
    • /
    • pp.47-52
    • /
    • 1997
  • The objective of this study was to investigate the in vitro / in vivo embryonic development after vitrification of mouse zygotes and the chrom osomal normality of delivered live young after embryo transfer. Mouse IVF zygotes were cryopreserved by vitrification using vitrification solution, EFS40 (40% ethylene glyc이, 30% Ficoll a and 0.3 M sucrose in phosphate buffer saline c containing 10% FBS ) . After mouse zygotes were exposed to EFS40 at 25"C for 30 sec., they were immediately plunged into LN$_2$. Vitrified thawed mouse zygotes were cultured upto bIastocysts in M16 for 4 days. The rates of in vitro development were 71.5% under this condition. Cultured blastocysts were transferred to recipients (3 day of pseudopregnant) on one or both uterus horns (6-8 embryos per a uterus horn). And all recipients were allowed to produce litters. The results obtained in these experiments were summarized as follows: The pregnancy rates and in vivo survival rates, live fetus rates, for vitrified zygotes (80.0, 39.6%) were not significantly difference in those of control zygotes (77.8%, 50.0%). Also, all of live-born young mice were chromosomally normal (n=40). This results suggested that proposed rapid vitrification procedures can be effectively use in 1-cell mouse zygotes cryopreservation.

  • PDF