• Title/Summary/Keyword: Mouse Erythroleukemia Cells

Search Result 3, Processing Time 0.016 seconds

Microarray Profiling of Genes Differentially Expressed during Erythroid Differentiation of Murine Erythroleukemia Cells

  • Heo, Hyen Seok;Kim, Ju Hyun;Lee, Young Jin;Kim, Sung-Hyun;Cho, Yoon Shin;Kim, Chul Geun
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.57-68
    • /
    • 2005
  • Murine erythroleukemia (MEL) cells are widely used to study erythroid differentiation thanks to their ability to terminally differentiate in vitro in response to chemical induction. At the molecular level, not much is known of their terminal differentiation apart from activation of adult-type globin gene expression. We examined changes in gene expression during the terminal differentiation of these cells using microarray-based technology. We identified 180 genes whose expression changed significantly during differentiation. The microarray data were analyzed by hierarchical and k-means clustering and confirmed by semi-quantitative RT-PCR. We identified several genes including H1f0, Bnip3, Mgl2, ST7L, and Cbll1 that could be useful markers for erythropoiesis. These genetic markers should be a valuable resource both as potential regulators in functional studies of erythroid differentiation, and as straightforward cell type markers.

Cloning and characterization of polyA- RNA transcripts encoded by activated B1-like retrotransposons in mouse erythroleukemia MEL cells exposed to methylation inhibitors

  • Tezias, Sotirios S.;Tsiftsoglou, Asterios S.;Amanatiadou, Elsa P.;Vizirianakis, Ioannis S.
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.126-131
    • /
    • 2012
  • We have previously identified a DNA silent region located downstream of the 3'-end of the ${\beta}^{major}$ globin gene (designated B1-559) that contains a B1 retrotransposon, consensus binding sites for erythroid specific transcription factors and shares the capacity to act as promoter in hematopoietic cells interacting with ${\beta}$-globin gene LCR sequences in vitro. In this study, we have cloned four new non-polyA RNA transcripts being detected upon blockade of murine erythroleukemia (MEL) cell differentiation to erythroid maturation by methylation inhibitors and demonstrated that two of them share high structural homology with sequences of B1 element found within the B1-559 region. Although it is not clear yet whether and how these RNAs interfere with induction of erythroid maturation, these data provide evidence for the first time showing that methylation inhibitors can activate silent repetitive DNA sequences in MEL cells and may have implications in cancer chemotherapy using demethylating drugs as antineoplastic agents.

Analyses of Transcription Factor CP2 Expression during Development and Differentiation

  • Chae, Ji-Hyung;Oh, Eun-Jung;Kim, Chul-Geun
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.143-150
    • /
    • 1997
  • Transcription factor CP2 was identified initially to bind the promoter region of the murine a-globin gene and its activity was shown to increase 2 to 3 fold during the induced differentiation of murine erythroleukemia (MEL) cells. To get further insight into the role of CP2 during development and differentiation, steady-state levels of CP2 message were monitored by using reverse transcriptase (RT)-PCR and in situ hybridization assays in the cultured MEL cells and differentiating embryonic stem (ES) cells in vitro, and in fetal and adult mouse tissues. The amount of CP2 messages increased 3 to 5 fold during induced differentiation of MEL cells, suggesting that the increment of CP2 activity during induced differentiation of MEL cells is originated from the increase of transcription initiation. On the other hand, CP2 expression is not restricted to the erythroid lineage cells; CP2 expressed ubiquitously from the undifferentiated ES cells to adult tissue cells. CP2 transcript was observed even in the undifferentiated ES cells and the level of expression increased from day 8 of the differentiating embryoid bodies. RT-PCR assay in the total RNAs prepared from several tissues of the adult mouse also showed ubiquitous expression profile, although the levels of expression were variable among tissues. When non-radioactive in situ hybridization assay was performed to the paraffin-sectioned whole body mouse embryos at days 11.5, 13.5, and 16.5 after fertilization, variable amounts of positive signals were also detected in different tissues.

  • PDF