• Title/Summary/Keyword: Mouse 2 cell embryo

Search Result 234, Processing Time 0.024 seconds

Expression of Apoptotic Genes in Mouse Preimplantation Embryo Development (착상전 생쥐 배아 발달에 대한 Apoptotic Gene의 발현)

  • Lee, Yu-Il;Lee, Jin;Kim, Mi-Young;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.77-84
    • /
    • 2003
  • Objective : The aim of this study was to evaluate the influence of three different media on preimplatation embryo development and the expression of Bcl-2, Mcl-1, Bax, and Bok in mouse. Materials and Methods: Two-cell embryos were retrieved from ICR female mice (4 weeks old) at 48 hr after hCG injection and cultured in Ham's F-10, HTF, and G1.2 media. The developmental rate of 2-cell embryos was evaluated from 24 hr to 72 hr after culture. RT-PCR was performed for the detection of Bcl-2, Mcl-1, Bax, and Bok gene expression. Results: The rates of morula and blastocyst in HTF and G1.2 media (88%, 98.1%) were significantly higher than those in Ham's F-10 media (39.6%) at 48 hr. Likewise, the rates of hatching and hatched blastocyst in HTF and G1.2 media (21.9%, 52.9%) were higher than those in Ham's F-10 media (3.5%) at 72 hr. Bcl-2 and Bax mRNAs were highly detected in embryos cultured in Ham's F-10 when compared in embryos cultured in HTF and G1.2. In contrast, the expression of Mcl-1 and Bok was not significantly different. Conclusion: These results show that HTF and G1.2 culture media increase the rate of blastocyst formation and stimulate Bcl-2 and Bax gene expression in mouse preimplantation embryos.

Characterization of Embryo-specific Autophagy during Preimplantation (착상전 난자 자식작용의 특성규명)

  • Lee, Jae-Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3541-3546
    • /
    • 2011
  • Autophagy is an evolutionarily conserved lysosomal pathway for degrading cytoplasmic proteins, macromolecules, and organelles in addition to recycling protein and ATP synthesis. Although autophagy is very important during embryogenesis, the mechanism underlying the dynamic development during this process remains largely unknown. In order to obtain insights into autophagy in early embryo development, we analyzed gene expression levels of autophagy-related genes (ATGs) in mouse embryos developing in vitro. Using real time RT-PCR technique, ATGs including Atg2a, Atg3, Atg4b, Atg5, Atg6, Atg7, Atg9a, and Wipi3, as maternal transcripts, were only up-regulated in 1-cell embryo stage before zygotic genomic activation (ZGA), and then expression decreased from 2-cell to blastocyst embryo stage. ATGs including Dram and Atg9b were expressed abundantly in 1-cell embryo state and in blastocyst embryo stage, athough Atg8 and Ulk1 were constantly expressed during preimplantation stage. However, Atg4d were only up-expressed from 4-cell to blastocyst stage. These results suggest that autophagy is related in mouse embryo, which possibly gives an important role for early development.

Development of Mouse Preimplantation Embryos in Solubilized Matrigel Media (용해된 Matrigel 첨가 배지에서 착상전 생쥐 배아의 발생)

  • Chung, Byung-Mok;Choo, Hyung-Sik;Kang, Byung-Moon;Gye, Myung-Chan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.4
    • /
    • pp.381-385
    • /
    • 2000
  • Objective: To verify the effect of two forms (growth factor and growthfactor-reduced) of solubilized Matrigel on the development in mouse preimplantation embryos. Methods: Late 2-cell stage eggs were cultured through the blastocyst stage in the presence of GF- or GFR-Matrigel (0.5%, v/v). Morphological development, cell number and % apoptotic nuclei of blastocyst were measured by Roecst staining and TUNEL of nuclei. Results: Morphological development, number of cells per embryo was significantly increased in the presence of GF- or GFR-Matrigel. Culture of the embryos in the GF-Matrigel gave the best result. Conclusion: Low concentration of solubilized Matrigel improved development of mouse embryos regardless of growth factor content of the Matrigel. Growth factors and extracellular matrix protein included in the Matrigel synergistically potentiated the development of mouse embryos.

  • PDF

The Effect of Platelet Activating Factor on Development of Embryonic Cells at Co-culture in vitro with Human Salpingeal Cell in Mouse. (인간 난관세포와의 체외 공동배양과정에서 혈소판 활성요소가 생쥐배의 발달에 미치는영향)

  • Min, Bu-Kie;Kim, Kie-Seok;Lee, Hee-Sup;Hong, Kie-Youn;Kim, Heung-Gon;Shin, Mu-Cheol;Lee, Chan-Kun;Choi, Eun-Ha
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • There are a number of problems during the process of culture in vitro on fertilization and embryo development compared to those on in vivo counterparts. And the platelet activating factor (PAF), which is found not only in mammalian spermatozoa but also preembryos, is implicated on reproductive process. To improve the environment of culture on in vitro fertilization and embryo development, coculture using salpingeal epithelial cells has been considered to accept the better result on pregnancy rate. This study was designed to determine if two different culture systems, coculture alone and PAF treated coculture, are positive or negative influence on process of in vitro fertilization and embryo culture in mouse. The cell cleavage rate reached to 2-4 cell stage at 24 hours of culture is 56.81% (50/88) and 48.21%(54/112) respectively, in PAF treated group which is added PAF on coculture and in coculture group. But the rate of cells cleavage was similar in both group after 48 hours of culture. The rate of unfertilization after insemination of oocytes was higher in coculture group(55..53%) than in PAF treated group(42.37%). And in assessment of undeveped embryos, the rate of equalized cell block was similar on both, coculture alone (35.3%)and PAF treated coculture(35.5%). while unequalized cell block was higher rate in PAF treated coculture(19.4%) than coculture alone (11.8%). But the rate of cytoplasmic degeneration of undeveloped embryos was significantly higher in PAF treated coculture than coculture alone. In conclusion, we have observed that PAF treated coculture is superior in the rates of in vitro fertilization and early embryo cell cleavage compared to those in coculture alone, but there is no difference on the rates of embryo develpments, cell degeneration, cell quality in both PAF treated coculture and coculture alone when the embryo cells were continuosly cultured for 48 hours or more.

  • PDF

Expression of c-myc Proto-oncogene in Preimplantation Mouse Embryos (착상전 생쥐배아에서 c-myc 유전자의 발현)

  • 정성진;강해묵강성구김경진
    • The Korean Journal of Zoology
    • /
    • v.38 no.2
    • /
    • pp.196-203
    • /
    • 1995
  • The c-myc proto-oncogene, one of the immediately earlY genes, is expressed in various mammalian cell types and heavily involved in the regulation of cell proliferation and differentiation. To determine endogeneous expression pattern of c-myc gene in preimpBantation mouse embwos, we employed a reverse transcription coupled to polvrnerase chain reaction (RT-PCR). Transcript of c-myc was detected at fertilized embryos as a maternal transcript. At the early two-cell stave, transcript of c-myc gene was hardly detected, bu, appeared at late two-cell embryos as a zygotic transcript. The level of c-myc expresion was increased at later stases and peaked at blastocvst stage. To examine the functional role of promoter region for c-myc gene transcription, we fused the 5'upstream region (1.8 kb) including econ 1 of c-myc genomic DNA with E. coli lacE gene fnamed as pcMYC-laczl. pcMYC-lacZ was microiniected into the pronscleus of mouse one-cell embryovs, and p·salactosidase activity was determined tv histochemical staining with X-gal at different stases. f-galactosidase activity was detected only at blastocyst, but not at the earlier stage embryos. This result indicates that c-myc gene is transcriptionallv active during mouse preimplantation development.

  • PDF

Expression of Ids in Preimplantation Mouse Embryos (착상 전 생쥐배아에서 Id 유전자의 발현)

  • Hong, Seok-Ho;Nah, Hee-Young;Lee, Young-Jin;Lee, Ji-Won;Son, Young-Soo;Chae, Hee-Dong;Kim, Sung-Hoon;Kang, Byung-Moon;Kim, Chung-Hoon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.4
    • /
    • pp.201-207
    • /
    • 2004
  • Objective: The Id family of helix-loop-helix proteins are thought to affect the balance between cell growth and differentiation by negatively regulating the function of basic-helix-loop-helix (bHLH) transcriptional factors. The aim of this study was to investigate the expression pattern of Ids (Id-1, -2, -3, and -4) in preimplantation mouse embryos at mRNA and protein levels. Methods: Oocytes and preimplantation embryos were collected from reproductive organs of female ICR mice following superovulation. RT-PCR was performed to investigate the mRNA expression patterns of Id genes and their protein were localized by immunofluorescence analysis. Results: Id-1 and Id-3 mRNAs were strongly expressed at the germinal vesicle (GV) oocyte and the blastocyst stages. Id-2 mRNA was expressed throughout preimplantation embryo development, but Id-4 was not expressed. Immunofluorescence showed that Id-1 and Id-2 were predominantly localized in cytoplasmic region, but the immunofluorescence signal of Id-3 was weak throughout preimplantation embryo development. Conclusion: These data show for the first time that Ids are expressed in preimplantation mouse embryos and suggest that Ids may play an important role in early preimplantation embryo development and uterine physiological changes.

Effects of laser-assisted hatching and exposure time to vitrification solution on mouse embryo development

  • Kim, Hye Jin;Park, Sung Baek;Yang, Jung Bo;Choi, Young Bae;Lee, Ki Hwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.4
    • /
    • pp.193-200
    • /
    • 2017
  • Objective: This study was conducted to investigate the efficacy of laser-assisted hatching (LAH) and various vitrification times for embryonic development and blastocyst cell numbers. Methods: First, 2-cell and 8-cell embryos were collected by flushing out the oviducts. In the control groups, they were vitrified for 8 or 10 minutes without LAH. The LAH groups underwent quarter laser zona thinning-assisted hatching before vitrification (4, 6, and 8 minutes or 4, 7, and 10 minutes, respectively). After incubation, double-immunofluorescence staining was performed. Results: The hatched blastocyst rate 72 hours after the 2-cell embryos were thawed was significantly higher in the 2LAH-ES8 group (33.3%) than in the other groups (p< 0.05). In the control-8 group ($22.1{\pm}4.6$), the cell number of the inner cell mass was higher than in the LAH groups (p< 0.05). The number of trophectoderm cells was higher in the 2LAH-ES6 group ($92.8{\pm}8.9$) than in the others (p< 0.05). The hatched blastocyst rate 48 hours after the 8-cell embryos were thawed was higher in the 8LAH-ES4 group (45.5%) than in the other groups, but not significantly. The inner cell mass cell number was highest in the 8LAH-ES7 group ($19.5{\pm}5.1$, p< 0.05). The number of trophectoderm cells was higher in the 8LAH-ES10 group ($73.2{\pm}12.1$) than in the other groups, but without statistical significance. Conclusion: When LAH was performed, 2-cell embryos with large blastomeres had a lower hatched blastocyst rate when the exposure to vitrification solution was shorter. Conversely, 8-cell embryos with small blastomere had a higher hatched blastocyst rate when the exposure to vitrification solution was shorter.

Identification of a Technique Optimized for the Isolation of Spermatogonial Stem Cells from Mouse Testes

  • Han, Na Rae;Park, Hye Jin;Lee, Hyun;Yun, Jung Im;Choi, Kimyung;Lee, Eunsong;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.327-336
    • /
    • 2018
  • To date, there are no protocols optimized to the effective separation of spermatogonial stem cells (SSCs) from testicular cells derived from mouse testes, thus hindering studies based on mouse SSCs. In this study, we aimed to determine the most efficient purification method for the isolation of SSCs from mouse testes among previously described techniques. Isolation of SSCs from testicular cells derived from mouse testes was conducted using four different techniques: differential plating (DP), magnetic-activated cell sorting (MACS) post-DP, MACS, and positive and negative selection double MACS. DP was performed for 1, 2, 4, 8, or 16 h, and MACS was performed using EpCAM ($MACS^{EpCAM}$), Thy1 ($MACS^{Thy1}$), or GFR ${\alpha}1$ ($MACS^{GFR{\alpha}1}$) antibodies. The purification efficiency of each method was analyzed by measuring the percentage of cells that stained positively for alkaline phosphatase. DP for 8 h, $MACS^{Thy1}$ post-DP for 8 h, $MACS^{GFR{\alpha}1}$, positive selection double $MACS^{GFR{\alpha}1/EpCAM}$, and negative selection double $MACS^{GFR{\alpha}1/{\alpha}-SMA}$ were identified as the optimal protocols for isolation of SSCs from mouse testicular cells. Comparison of the purification efficiencies of the optimized isolation protocols showed that, numerically, the highest purification efficiency was obtained using $MACS^{GFR{\alpha}1}$. Overall, our results indicate that $MACS^{GFR{\alpha}1}$ is an appropriate purification technique for the isolation of SSCs from mouse testicular cells.

Ultrarapid Freezing of Mouse 2-Cell Embryos (생쥐 2-세포기 수정란의 초급속동결)

  • 강만종;이철상;한용만;유대열;이경광
    • Korean Journal of Animal Reproduction
    • /
    • v.14 no.1
    • /
    • pp.9-16
    • /
    • 1990
  • This study was carried out in order to investigate effects of cryoprotectant concentration and equilibration time on survival of ultrarapidly frozen 2-cell mouse embryos. Mouse 2-cell embryos, following dehydration by exposure to DMSO and sucrose, were directly immersed into liquid nitrogen and thawed in 37$^{\circ}C$ water. Viability was defined by development rate to the blastocyst stage after in vitro culture for 72 hours. The results are summarized as follows ; 1. When 0.25M of sucrose was added into the freezing medium at various concentrations of DMSO and dilution medium, higher development rate of embryo was obtained in 3.0M DMSO concentrations (82.6%). However, when sucrose concentraitons of 0.25 and 0.5 M were added to the freezing medium with 3.0 M DMSO and dilution medium, development rate of embryos were 81.7% and 24.1%, respectively. 2. In the equilibration time at room temperature, higher development rate was attained after short period of time (2.5min) in 3.0 M DMSO+0.25 M sucrose (85.9%). 3. The development rate of embryos at in vitro 2-cell, in vitro 2-cell, solution control and untreated control was 84.6%, 90.9%, 89.9%,, and 89.7%, respectively.

  • PDF

Effects of Slow Freezing on Development of Blastomeres Separated from Mouse Preimplantation Embryos (완만동결이 생쥐 초기배 난할세포의 발달에 미치는 영향)

  • Jin, D.I.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.3
    • /
    • pp.263-268
    • /
    • 2000
  • The development of single blastomeres isolated from 2-, 4- and 8-cell mouse embryos and the ability of such blastomeres to survive slow freezing were studied. Of 223, 60 and 188 single blastomeres isolated from 2-, 4- and 8-cell mouse embryos, respectively, 111 blastomeres (49.8%) from 2-cell embryos, 12 blastomeres (20.0%) from 4-cell embryos and blastomeres (16.5) from 8-cell embryos developed into blastocysts after culture for 96 hrs. The recovery rate was 54.2% (65/120), 46.4% (13/28) and 24.3% (17/70) of blastomeres derived from 2-, 4- and 8-cell embryos following freezing and thawing and the survival of frozen-thawed blastomeres was 27.1% (16/59), 36.4% (4/11) and 17.6% (3/17), and respectively. The apparently six normal fetuses were obtained from frozen-thawed blastomere from 2-cell embryos after transferring into the recipients. These results indicate that mouse btastomeres isolated from preimplatation stage embryos can survive storage in liquid nitrogen following slow freezing.

  • PDF