• 제목/요약/키워드: Mouse, Implantation

검색결과 106건 처리시간 0.028초

착상기간의 자궁내 환경이 생쥐 난자 및 배아의 투명대 미세구조에 미치는 영향 (The Effect of Uterine Environment during Peri-implantation Period on the Ultrastructure of Zona Pellucida in Mouse Oocytes and Embryos)

  • 한성원;정호삼;강희규;이호준;계명찬;김성례;김문규
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제26권3호
    • /
    • pp.345-353
    • /
    • 1999
  • In the studies on the hatching mechanisms in mammals, many investigators focused on the embryonic intrinsic factor(s) in in vitro culture, but the uterine environment as the extrinsic factor(s) is thought to play an important role in hatching mechanism. Therefore, to evaluate the effect of uterine environment on the hatching event in vivo, the immature(GV) and ovulated(MII) oocytes, and the late 2-cell embryos of mouse were transferred to pseudopregnant foster mother's uterus during peri-implantation period. So it was verified whether there would happen hatching by only uterine environment independently on embryonic stage. The ultrastructural changes of the zona surface of transferred group were compared with those 01 in vivo and vitro group by SEM. 36 hrs after transfer, the immature and ovulated oocytes almost degenerated, and the late 2-cell embryos developed to various embryonic stages. However, the embryos which didn't develop to blastula stage did not hatch. The ultrastructural network of ZP in transferred group seemed to be smoothed uniformly, which was different from in vitro group. In conclusion, it is suggested that the uterine environment during peri-implantation period enhances the embryo hatching by provoking the structural change of ZP.

  • PDF

마우스 자궁내막 세포를 이용한 3차원적 배양시스템 확립에 관한 연구; I. 마우스 자궁내막에 관한 세포조직학적 연구 (Establishment of In Vitro 3-Dimensional Culture System of Mouse Endometrial Cells;I. Cytohistological Study on Mouse Endometrium)

  • 남화경;김은영;이금실;박세영;박은미;권중균;윤산현;박세필;임진호
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제27권1호
    • /
    • pp.31-37
    • /
    • 2000
  • 연구배경: 본 연구는 마우스의 자궁에 있어 착상시 일어나는 자궁내막의 변화를 미세구조적 측면에서 관찰하고, 이러한 기초 자료를 바탕으로 마우스 자궁내막세포를 이용한 3차원적 체외 배양시스템을 확립하는데 있다. 실험동물은 임신이 유도된 $6{\sim}8$ 주령의 ICR을 이용하였다. 연구재료 및 방법: 생검 조직은 hCG 접종 후 D1과 D5에 자궁 전체를 적출하여 획득하였다. 채취된 조직은 2.5% glutaradehyde와 1% osmium tetroxide를 이용하여 고정시킨 후, 탈수, 포매 및 절편 과정을 거쳐 염색시키고, 광학현미경, 투과전자현미경을 이용하여 관찰하였으며, 주사전자현미경을 이용한 관찰을 위한 표본은 고정된 조직을 탈수, 건조 및 코팅 과정을 거쳐 획득하였다. 결과: 1) 광학현미경상에서, 후기 분비기인 D5의 생검 조직은 초기 분비기인 D1의 조직에 비해 결합조직의 증가에 따른 기질층의 확장이 두드러졌으며, 이와 함께 자궁내막선과 혈관이 크게 발달되어 있었다. 2) 투과전자현미경상에서, 마우스 자궁내막의 미세구조는 단충원주형의 표면상피세포층, 기저층 및 기질층의 3층을 이루고 있었다. 또한, D5에서는 미세융모, 소포체, 골지체, 지질, 글리코겐 및 분비 과립 그리고 기저층의 표면적이 크게 확장되어 있었다. 3) 주사전자현미경상에서, 분비기가 진행될수록 마우스 표면상피세포의 주름의 정도와 미세융모의 분포가 크게 증가함을 알 수 있었으며, 특히 마우스의 착상시기인 D5에서는 자궁 수용성의 표지자인 자궁돌기의 출현이 두드러졌다. 마우스의 자궁돌기는 자궁내벽을 따라 불규칙적으로 좁은 지역에 분포하고 있었으며, 동일표본 내에서도 서로 다른 발달 단계를 보여주고 있었다. 결론: 마우스 자궁내막의 형태학적 변화에 관한 이러한 관찰 결과는 마우스의 자궁내막이 발정주기 중 특히 착상직전의 시기에 커다란 형태학적 변화를 경험함을 보여주었다.

  • PDF

Effects of human chorionic gonadotropin-producing peripheral blood mononuclear cells on the endometrial receptivity and implantation sites of the mouse uterus

  • Delsuz Rezaee;Mojgan Bandehpour;Bahram Kazemi;Sara Hosseini;Zeinab Dehghan;Saiyad Bastaminejad;Mohammad Salehi
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권4호
    • /
    • pp.248-258
    • /
    • 2022
  • Objective: This research investigated the effects of human chorionic gonadotropin (HCG)-producing peripheral blood mononuclear cells (PBMCs) on the implantation rate and embryo attachment in mice. Methods: In this experimental study, a DNA fragment of the HCG gene was cloned into an expression vector, which was transfected into PBMCs. The concentration of the produced HCG was measured using enzyme-linked immunosorbent assay. Embryo attachment was investigated on the co-cultured endometrial cells and PBMCs in vitro. As an in vivo experiment, intrauterine administration of PBMCs was done in plaque-positive female mice. Studied mice were distributed into five groups: control, embryo implantation dysfunction (EID), EID with produced HCG, EID with PBMCs, and EID with HCG-producing PBMCs. Uterine horns were excised to characterize the number of implantation sites and pregnancy rate on day 7.5 post-coitum. During an implantation window, the mRNA expression of genes was evaluated using real-time polymerase chain reaction. Results: DNA fragments were cloned between the BamHI and EcoRI sites in the vector. About 465 pg/mL of HCG was produced in the transfected PBMCs. The attachment rate, pregnancy rate, and the number of implantation sites were substantially higher in the HCG-producing PBMCs group than in the other groups. Significantly elevated expression of the target genes was observed in the EID with HCG-producing PBMCs group. Conclusion: Alterations in gene expression following the intrauterine injection of HCG-producing PBMCs, could be considered a possible cause of increased embryo attachment rate, pregnancy rate, and the number of implantation sites.

Relationship between reactive oxygen species and autophagy in dormant mouse blastocysts during delayed implantation

  • Shin, Hyejin;Choi, Soyoung;Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제41권3호
    • /
    • pp.125-131
    • /
    • 2014
  • Objective: Under estrogen deficiency, blastocysts cannot initiate implantation and enter dormancy. Dormant blastocysts live longer in utero than normal blastocysts, and autophagy has been suggested as a mechanism underlying the sustained survival of dormant blastocysts during delayed implantation. Autophagy is a cellular degradation pathway and a central component of the integrated stress response. Reactive oxygen species (ROS) are produced within cells during normal metabolism, but their levels increase dramatically under stressful conditions. We investigated whether heightened autophagy in dormant blastocysts is associated with the increased oxidative stress under the unfavorable condition of delayed implantation. Methods: To visualize ROS production, day 8 (short-term dormancy) and day 20 (long-term dormancy) dormant blastocysts were loaded with $1-{\mu}M$ 5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-$H_2DCFDA$). To block autophagic activation, 3-methyladenine (3-MA) and wortmannin were used in vivo and in vitro, respectively. Results: We observed that ROS production was not significantly affected by the status of dormancy; in other words, both dormant and activated blastocysts showed high levels of ROS. However, ROS production was higher in the dormant blastocysts of the long-term dormancy group than in those of the short-term group. The addition of wortmannin to dormant blastocysts in vitro and 3-MA injection in vivo significantly increased ROS production in the short-term dormant blastocysts. In the long-term dormant blastocysts, ROS levels were not significantly affected by the treatment of the autophagy inhibitor. Conclusion: During delayed implantation, heightened autophagy in dormant blastocysts may be operative as a potential mechanism to reduce oxidative stress. Further, ROS may be one of the potential causes of compromised developmental competence of long-term dormant blastocysts after implantation.

생쥐배의 발생단계별 미세분할, 배양 및 이식 관한 연구 (Studies on Culture and Transfer of Mouse Embryos Biseeted at Various Cell Stages)

  • 강대진;박희성;이효종;박충생
    • 한국수정란이식학회지
    • /
    • 제4권1호
    • /
    • pp.28-34
    • /
    • 1989
  • These experiments were carried out to determine the effect of cell stage in embryo bisection on the sub-Sequent in vitro and in vivo development in mouse. The embryos of ICR mouse were microsurgicaily bisected at 2-cell, 4-cell, 8-cell, morula and blastocyst stage using a microsurgical blade attached a micromanipulator. These demi-embryos without zona pellucida were cultured up to blastocyst stage and transferred to pseudopregnant mice, and the development of these demi-embryos was compared with the results of intact embryos of the corresponding cell stage. The successful rate of mouse embryo bisection at 4-cell stage (59.0%) was significantly (p <0.05) lower than those at 8-cell (75.6%), 2ce11 (80.7%) or morula stage (84.8%), and highest at blastocyst stage (95.7%). When the bisected embryos without any damage from microsurgery were cultured in vitro up to blastocyst,the in vitro de'velopment of demi-embroys bisected at morula to blastocyst was 91.6 to 95.3%, which was similar to the culture result of intact embryos of corresponding stage. However, the in vitro development of demi-em-bryos bisected at 2- to 8-cell stage was signiflcantiy (p <0.05) lower.The post-transfer implantation rate of demi-embryos developed in vitro to eu-blastocyst were 19.6 and 25.4% in demi-embryos bisected at morula and blastocyst stage,respectively and not significantly (P <0.05)different from the result of intact embryos of the same stage. However, the implantation rates of demi-embryos bisected at 2- or 8-cell stage were significantly (P <0.05) lower than the result from the intact embryos of the corresponding stage.

  • PDF

The Effect of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) on The Expression of IL-1 System mRNA in Mouse Embryos

  • Kim, D. H.;S. S. Ko;Lee, H. C.;Lee, H. H.;Kim, S. S.;Lee, H. J.;B. C. Yang;Park, S. B.;W. K. Chang
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.52-52
    • /
    • 2003
  • Granulocyte-macrophage colony stimulating factor (GM-CSF) is synthesized in the female reproductive tract and has been shown to play an important role in human and murine embryo development and implantation. However, the mechanism of GM-CSF on the embryo development is unknown. Recent studies suggested that GM-CSF may be increase the expression of implantation relented genes, such as interleukin-1 (IL-1) system. Our aim of this study was to compare the interleukin-1$\alpha$ (IL-1$\alpha$), interleukin-1$\beta$ (IL-1$\beta$) and interleukin-1 receptor antagonist (IL-lra) mRNA between the GM-CSF supplemented group and control group in mouse embryos. Mouse 2-cell embryos were cultured in P-1 medium supplemented with or without mouse GM-CSF (10 ng/ml). The number of total and apoptotic cell in blastocyst were assessed by TUNEL. And then, the expression of IL-1$\alpha$, IL-1$\beta$ and IL-1ra mRNA in blastocyst were examined by RT-PCR.

  • PDF

Effect of severe acute respiratory syndrome coronavirus 2 infection during pregnancy in K18-hACE2 transgenic mice

  • Byeongseok, Kim;Ki Hoon, Park;Ok-Hee, Lee;Giwan, Lee;Hyukjung, Kim;Siyoung, Lee;Semi, Hwang;Young Bong, Kim;Youngsok, Choi
    • Animal Bioscience
    • /
    • 제36권1호
    • /
    • pp.43-52
    • /
    • 2023
  • Objective: This study aimed to examine the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on pregnancy in cytokeratin-18 (K18)-hACE2 transgenic mice. Methods: To determine the expression of hACE2 mRNA in the female reproductive tract of K18-hACE2 mice, real-time polymerase chain reaction (RT-PCR) was performed using the ovary, oviduct, uterus, umbilical cord, and placenta. SARS-CoV-2 was inoculated intranasally (30 μL/mouse, 1×104 TCID50/mL) to plug-checked K18-hACE2 homozygous female mice at the pre-and post-implantation stages at 2.5 days post-coitum (dpc) and 15.5 dpc, respectively. The number of implantation sites was checked at 7.5 dpc, and the number of normally born pups was investigated at 20.5 dpc. Pregnancy outcomes, including implantation and childbirth, were confirmed by comparison with the non-infected group. Tissues of infected mice were collected at 7.5 dpc and 19.5 dpc to confirm the SARS-CoV-2 infection. The infection was identified by performing RT-PCR on the infected tissues and comparing them to the non-infected tissues. Results: hACE2 mRNA expression was confirmed in the female reproductive tract of the K18-hACE2 mice. Compared to the non-infected group, no significant difference in the number of implantation sites or normally born pups was found in the infected group. SARS-CoV-2 infection was detected in the lungs but not in the female reproductive system of infected K18-hACE2 mice. Conclusion: In K18-hACE2 mice, intranasal infection with SARS-CoV-2 did not induce implantation failure, preterm labor, or miscarriage. Although the viral infection was not detected in the uterus, placenta, or fetus, the infection of the lungs could induce problems in the reproductive system. However, lung infections were not related to pregnancy outcomes.