• Title/Summary/Keyword: Mounting Time

Search Result 196, Processing Time 0.027 seconds

IRI estimation using analysis of dynamic tire pressure and axle acceleration

  • Zhao, Yubo;McDaniel, J. Gregory;Wang, Ming L.
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.151-161
    • /
    • 2017
  • A new method is developed to estimate road profile in order to estimate IRI based on the ASTM standard. This method utilizes an accelerometer and a Dynamic Tire Pressure Sensor (DTPS) to estimate road roughness. The accelerometer measures the vertical axle acceleration. The DTPS, which is mounted on the tire's valve stem, measures dynamic pressure inside the tire while driving. Calibrated transfer functions are used to estimate road profile using the signals from the two sensors. A field test was conducted on roads with different quality conditions in the city of Brockton, MA. The IRI values estimated with this new method match the actual road conditions measured with Pavement Condition Index (PCI) based on the ASTM standard, images taken from an onboard camera and passengers' perceptions. IRI has negative correlation with PCI in general since they have overlapping features. Compared to the current method of IRI measurement, the advantage of this method is that a) the cost is reduced; b) more space is saved; c) more time is saved; and d) mounting the two sensors are universally compatible to most cars and vans. Therefore, this method has the potential to provide continuous and global monitoring the health of roadways.

Design and manufacture of hybrid polyrnerconcrete bed for high speed machine tool (초고속 공작기계용 Hybrid Poymer Concrete bed 의 설계와 제작)

  • 서정도;임태성;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.404-409
    • /
    • 2004
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool life. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. Also, co-cure bonding method for functional part mounting was exhibited experimentally, by which manufacturing time and cost for polymer concrete bed will be remarkably reduced.

  • PDF

Airship Research and Development in the Areas of Design, Structures, Dynamics and Energy Systems

  • Stockbridge, Casey;Ceruti, Alessandro;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.170-187
    • /
    • 2012
  • Recent years have seen an outpour of revived interest in the use of airships for a number of applications.Present day developments in materials, propulsion, solar panels, and energy storage systems and the need for a more eco-oriented approach to flight are increasing the curiosity in airships, as the series of new projects deployed in recent years show; moreover, the exploitation of the always mounting simulation capabilities in CAD/CAE, CFD and FEA provided by modern computers allow an accurate design useful to optimize and reduce the development time of these vehicles.The purpose of this contribution is to examine the different aspects of airship development with a review of current modeling techniques for airship dynamics and aerodynamics along withconceptual design and optimization techniques, structural design and manufacturingtechnologies and, energy system technologies. A brief history of airships is presented followed by an analysis of conventional and unconventional airships including current projects and conceptual designs.

An Experimental Study on Vibration Control of Concrete Slab (콘크리트슬래브의 진동제어에 관한 실험적 연구)

  • Byun, Keun Joo;Lho, Byeong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.473-485
    • /
    • 1994
  • Vibration control of concrete slab mounting precision instrument is needed to make the working vibration environments in frequency domain as well as time domain. In order to take the vibration control countermeasures, signal and system analyses of the concrete slab are processed. Through them the dynamic responses of concrete slab are obtained in frequency domain, and frequency response functions are acquired by exciting the concrete slab and measuring dynamic responses at various points across its surface. The dynamic characteristics of concrete slab are determined by experimental modal analysis. Based on modal parameters from a set of frequency response function measured, it is possible to investigate the effects of potential design modifications and reduce the dynamic response of concerned point by moving or suppressing an objectionable modal resonance conditions through structural dynamics modification.

  • PDF

Measurement of Particles Generated from PECVD Process using ISPM (ISPM을 이용한 PECVD 공정 내 발생입자 측정 연구)

  • Kim, Dongbin;Mun, Jihun;Kim, HyeongU;Kang, Byung Soo;Yun, JuYoung;Kang, SangWoo;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.11 no.4
    • /
    • pp.93-98
    • /
    • 2015
  • Particles which generated from plasma enhanced chemical vapor deposition (PECVD) during thin film deposition process can affect to the process yield. By using light extinction method, ISPM can measure particles in the large-diameter pipe (${\leq}300mm$). In our research, in-situ particle monitor (ISPM) sensor was installed at the 300 mm diameter exhaust-line to count the particles in each size. In-house flange for mounting the transmitting and receiving parts of ISPM was carefully designed and installed at a certain point of exhaust line where no plasma light affect to the light extinction measurement. Measurement results of trend changes on particle count in each size can confirm that ISPM is suitable for real-time monitoring of vacuum process.

Study of Turbine Module Design for Die Casting Mold Release Injection Robot System (다이케스팅 이형재 분사 로봇시스템의 터빈 모듈 설계에 관한 연구)

  • Choi, Hyun-Jin;Son, Young-Bum;Park, Chul-Woo;Lee, Seung-Yong;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-7
    • /
    • 2015
  • Cleaning by injecting dry ice and water is a generally adopted trend these days to clean molds (injection, diecasting foundry, press, rubber mold, etc). This cleaning method is performed manually, or by installing multiple high pressure spray nozzles. We have manufactured a turbine cleaning module device that is able to clean diecasting modules at any position and angle in the space by mounting an articulated robot instead of the existing pipe type injection nozzle, to minimize lead time and enhance working yield of the cleaning process. In this paper, we analyzed process factors that are required to design the turbine module by reviewing number of revolution, and results according to different blade angles and thicknesses of the mold release injection turbine module, using computational fiuid dynamics (CFD).

A Study on the Static/Dynamic Stability for the Structure of a Mill Turret with a B-Axis Tilting Facility (B축 회전 기능을 갖춘 복합공구대 구조물의 정/동적 안정성에 관한 연구)

  • Kang, Seung-Hee;Kim, Chae-Sil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • Techniques of tool posts are developing such that variable machining is possible using only one machine for the complication of a product's shape and to reduce the machining time. In order to develop a mill turret with a variable machining function with the mounting of mill turret units on a B-axis tilting table, we determine the static/dynamic stability of the structure of the mill turret. To this end, a static structural analysis and a modal analysis were conducted. From the results of the static structural analysis, the maximum stress was found to be less than the allowable stress. By the comparing the results of the modal analysis of the excitation frequencies of the mill turret, there were no resonance regions found. Therefore, the mill turret with the B-axis tilting facility is shown to have good structural integrity.

A New Type of Active Engine Mount System Featuring MR Fluid and Piezostack (MR 유체와 압전스택을 특징으로하는 새로운 형태의 능동 엔진마운트 시스템)

  • Lee, Dong-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.444-449
    • /
    • 2009
  • An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) and presented in time domain.

  • PDF

Development of Electronic Portal Imaging Device and Treatment Position Verification for Fractionated Stereotatic Radiotherapy

  • Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Chilgoo Byun;Hong, Seung-Hong;Rhee, Soo-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.446-449
    • /
    • 2002
  • The video based electronic portal imaging device (EPID), which could display the portal image in near real time, was implemented to verify treatment position error in FSRT(Fractionated Stereotatic Radiation Therapy) instead of a portal film. Also, Developed FSRT system was composed of the stereotactic frame, frame mounting system and collimator cones. The verification of treatment position is very crucial in special therapies like FSRT. In general, the FSRT uses high dpse rate at small field size for treating small intracranial lesions. To evaluate quantitative positioning errors in FSRT, we used the first FSRT image as reference image and obtained the second FSRT image that was moved 2mm intentionally and detected intracranial contours after image processing. The generated 2mm error could be verified by overlapping only contours of two images. Through this study, the radiation treatment efficiency could be improved by performing precise radiation therapy with a developed video based EPID and FSRT.

  • PDF

Automatic Classification of SMD Packages using Neural Network (신경회로망을 이용한 SMD 패키지의 자동 분류)

  • Youn, SeungGeun;Lee, Youn Ae;Park, Tae Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.276-282
    • /
    • 2015
  • This paper proposes a SMD (surface mounting device) classification method for the PCB assembly inspection machines. The package types of SMD components should be classified to create the job program of the inspection machine. In order to reduce the creation time of job program, we developed the automatic classification algorithm for the SMD packages. We identified the chip-type packages by color and edge distribution of the images. The input images are transformed into the HSI color model, and the binarized histroms are extracted for H and S spaces. Also the edges are extracted from the binarized image, and quantized histograms are obtained for horizontal and vertical direction. The neural network is then applied to classify the package types from the histogram inputs. The experimental results are presented to verify the usefulness of the proposed method.