• Title/Summary/Keyword: Mountainous area

Search Result 639, Processing Time 0.037 seconds

Development of Ridge Distinction Program of The Mountainous Districts using GIS Program (GIS를 이용한 산지의 능선구분 프로그램 개발)

  • Park, Young-Kyu;Kwon, Soon-Duk;Kim, Tae-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.87-96
    • /
    • 2007
  • In this study, a Ridge Distinction Program was developed to improve the elevation standard, which is one of standards for mountainous districts conversion permission regulated by the Management of Mountainous Districts Act. To distinguish mountainous districts from other land types, this program assumed that the lower end of the mountainous districts is the outlet points where catchment size is 30ha. Also the program used the halfway line between the ridge and the lower end of the mountainous districts to recognize the upper slope areas. To prevent potential errors within the classification process, the areas that were classified as non-mountainous districts by the current forest type map were removed. According to the classification results by using the developed program, the 58% of the mountainous districts ($696,300m^2$) was classified into the upper slope area, while the only 3% of the mountainous districts ($30,956m^2$) were classified by adopting the current standards for the mountainous districts conversion permission. This result shows that the size of the upper slope areas tends to be altered by the standards defining the area. Therefore, for better acceptance of the Ridge Distinction Program in the associated fields, it is necessary to prove the effectiveness of the program and to revise the current standards for the mountainous districts conversion permission.

  • PDF

Typhoon damage analysis of transmission towers in mountainous regions of Kyushu, Japan

  • Tomokiyo, Eriko;Maeda, Junji;Ishida, Nobuyuki;Imamura, Yoshito
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.345-357
    • /
    • 2004
  • In the 1990s, four strong typhoons hit the Kyushu area of Japan and inflicted severe damage on power transmission facilities, houses, and so on. Maximum gust speeds exceeding 60 m/s were recorded in central Kyushu. Although the wind speeds were very high, the gust factors were over 2.0. No meteorological stations are located in mountainous areas, creating a deficiency of meteorological station data in the area where the towers were damaged. Since 1995 the authors have operated a network for wind measurement, NeWMeK, that measures wind speed and direction, covering these mountainous areas, segmenting the Kyushu area into high density arrays. Maximum gusts exceeding 70 m/s were measured at several NeWMeK sites when Typhoon Bart (1999) approached. The gust factors varied widely in southerly winds. The mean wind speeds increased due to effects of the local terrain, thus further increasing gust speeds.

An Analysis on the Determinants of Mountainous and Coastal Area's Housing Value Caused by the Characteristics of the Natural Environment (자연환경 특성에 따른 산지형 및 해안형 아파트의 주거가치 상승 결정요인 비교 분석)

  • Choi, Yeol;Kim, Hyeong Jun;Kim, Su Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.811-819
    • /
    • 2013
  • This study aims to analyze determinants of mountainous and coastal area's housing value caused by the characteristics of the natural environment. As the current issue of housing value is throwing the spotlight on the climate change recently, environmental features are significantly important than before. There were a lot of studies on the influence of environmental characteristics to the housing price but these studies were mostly dealing with the housing price in especially apartments nearby Han-river in Seoul, South Korea. To have differences with existing studies, environmental characteristics estimating housing value are classified as 8 elements including the view, the wind speed, and the humidity. The result of this study is in following; there were few significant environmental variables in mountainous housing value growth model. This means people living in mountainous area recognize on environmental factors more such as housing or complex characteristics. People living in coastal area are much more sensitive environment variables in their residence value than mountainous area. Especially, the view for the ocean is the most important variable in housing value, and wind speed is second positively significant. Humidity and safety of disaster are negatively significant variables.

Analysis of inundation and rainfall-runoff in mountainous small catchment using the MIKE model - Focusing on the Var river in France - (MIKE 모델을 이용한 산지소유역 강우유출 및 침수 분석 - 프랑스 Var river 유역을 중심으로 -)

  • Lee, Suwon;Jang, Dongwoo;Jung, Seungkwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Recently, due to the influence of climate change, the occurrence of damage to heavy rain is increasing around the world, and the frequency of heavy rain with a large amount of rain in a short period of time is also increasing. Heavy rains generate a large amount of outflow in a short time, causing flooding in the downstream part of the mountainous area before joining the small and medium-sized rivers. In order to reduce damage to downstream areas caused by flooding, it is very important to calculate the outflow of mountainous areas due to torrential rains. However, the sewage network flooding analysis, which is currently conducting the most analysis in Korea, uses the time and area method using the existing data rather than calculating the rainfall outflow in the mountainous area, which is difficult to determine that the soil characteristics of the region are accurately applied. Therefore, if the rainfall is analyzed for mountainous areas that can cause flooding in the downstream area in a short period of time due to large outflows, the accuracy of the analysis of flooding characteristics that can occur in the downstream area can be improved and used as data for evacuating residents and calculating the extent of damage. In order to calculate the rainfall outflow in the mountainous area, the rainfall outflow in the mountainous area was calculated using MIKE SHE among the MIKE series, and the flooding analysis in the downstream area was conducted through MIKE 21 FM (Flood model). Through this study, it was possible to confirm the amount of outflow and the time to reach downstream in the event of rainfall in the mountainous area, and the results of this analysis can be used to protect human and material resources through pre-evacuation in the downstream area in the future.

Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation (산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증)

  • Sunghyun, Min;Sukhee, Yoon;Myongsoo, Won;Junghwa, Chun;Keunchang, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.244-255
    • /
    • 2022
  • This study estimated and evaluated the high resolution (1km) gridded mountain meteorology data of daily mean, maximum and minimum temperature based on ASOS (Automated Surface Observing System), AWS (Automatic Weather Stations) and AMOS (Automatic Mountain Meteorology Observation System) in South Korea. The ASOS, AWS, and AMOS meteorology data which were located above 200m was classified as mountainous area. And the ASOS, AWS, and AMOS meteorology data which were located under 200m was classified as non-mountainous area. The bias-correction method was used for correct air temperature over complex mountainous area and the performance of enhanced daily coefficients based on the AMOS and mountainous area observing meteorology data was evaluated using the observed daily mean, maximum and minimum temperature. As a result, the evaluation results show that RMSE (Root Mean Square Error) of air temperature using the enhanced coefficients based on the mountainous area observed meteorology data is smaller as 30% (mean), 50% (minimum), and 37% (maximum) than that of using non-mountainous area observed meteorology data. It indicates that the enhanced weather coefficients based on the AMOS and mountain ASOS can estimate mean, maximum, and minimum temperature data reasonably and the temperature results can provide useful input data on several climatological and forest disaster prediction studies.

Spatial Prediction of Soil Carbon Using Terrain Analysis in a Steep Mountainous Area and the Associated Uncertainties (지형분석을 이용한 산지토양 탄소의 분포 예측과 불확실성)

  • Jeong, Gwanyong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Soil carbon(C) is an essential property for characterizing soil quality. Understanding spatial patterns of soil C is particularly limited for mountain areas. This study aims to predict the spatial pattern of soil C using terrain analysis in a steep mountainous area. Specifically, model performances and prediction uncertainties were investigated based on the number of resampling repetitions. Further, important predictors for soil C were also identified. Finally, the spatial distribution of uncertainty was analyzed. A total of 91 soil samples were collected via conditioned latin hypercube sampling and a digital soil C map was developed using support vector regression which is one of the powerful machine learning methods. Results showed that there were no distinct differences of model performances depending on the number of repetitions except for 10-fold cross validation. For soil C, elevation and surface curvature were selected as important predictors by recursive feature elimination. Soil C showed higher values in higher elevation and concave slopes. The spatial pattern of soil C might possibly reflect lateral movement of water and materials along the surface configuration of the study area. The higher values of uncertainty in higher elevation and concave slopes might be related to geomorphological characteristics of the research area and the sampling design. This study is believed to provide a better understanding of the relationship between geomorphology and soil C in the mountainous ecosystem.

Development of Digital Terrain Analysis for an Identification of Wetland Area at Mountainous Watershed (산지습지의 수문지형분석 방법론의 개발)

  • Jang, Eun-Se;Lee, Eun-Hyung;Kim, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1473-1483
    • /
    • 2015
  • In this study, a digital terrain analysis had been performed for a mountainous watershed having wetlands. In order to consider the impact for wetland in the flow determination algorithm, the Laplace equation is implemented into the upslope accounting algorithm of wetness computation scheme. The computational algorithm of wetland to spatial contribution of downslope area and wetness was also developed to evaluate spatially distributed runoff due to the presence of wetland. Developed schemes were applied to Wangpichun watershed located Chuncuk mountain at Ulzingun, South Korea. Both spatial distribution of wetness and its histogram indicate that the developed scheme provides feasible consideration of wetland impact in spatial hydrologic analysis. The impact of wetland to downslope propagation pattern is also useful to evaluate spatially distributed runoff distribution.

MONITORING OF MOUNTAINOUS AREAS USING SIMULATED IMAGES TO KOMPSAT-II

  • Chang Eun-Mi;Shin Soo-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.653-655
    • /
    • 2005
  • More than 70 percent of terrestrial territory of Korea is mountainous areas where degradation becomes serious year by year due to illegal tombs, expanding golf courses and stone mine development. We elaborate the potential usage of high resolution image for the monitoring of the phenomena. We made the classification of tombs and the statistical radiometric characteristics of graves were identified from this project. The graves could be classified to 4 groups from the field survey. As compared with grouping data after clustering and discriminant analysis, the two results coincided with each other. Object-oriented classification algorithm for feature extraction was theoretically researched in this project. And we did a pilot project, which was performed with mixed methods. That is, the conventional methods such as unsupervised and supervised classification were mixed up with the new method for feature extraction, object-oriented classification method. This methodology showed about $60\%$ classification accuracy for extracting tombs from satellite imagery. The extraction of tombs' geographical coordinates and graves themselves from satellite image was performed in this project. The stone mines and golf courses are extracted by NDVI and GVI. The accuracy of classification was around 89 percent. The location accuracy showed extraction of tombs from one-meter resolution image is cheaper and quicker way than GPS method. Finally we interviewed local government officers and made analyses on the current situation of mountainous area management and potential usage of KOMPSAT-II images. Based on the requirement analysis, we developed software, which is to management and monitoring system for mountainous area for local government.

  • PDF

Development of Hydrologic Simulation Model for the Prediction of Long-Term Runoff from a Small Watershed

  • 고덕구;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.33-46
    • /
    • 1990
  • Abstract Over 700/0 of the rural land area in Korea is mountainous and small watersheds provide most of the water resources for agricutural use. To provide an appropriate tool for the agricultural water resource development project, SNUA2, a mathematical model for simulating the physical processes governing the precipitation-runoff relationships and predicting the storm and long-term runoff quantities from the small mountainous watersheds was developed. The hydrological characteristics of small mountainous watersheds were reviewed to select appropriate theories for the simulation of the runoff processes, and a deterministic and distributed model was developed. In this, subsurface flows are routed by solving Richard's two dimensional equation, the dynamics of soil moisture contents are simulated by the consideration of phenological factors of canopy plants and surface flows are routed by solving the kinematic wave theory by numerical analysis. As a result of an application test of the model to the Sanglim watershed, peak flow rates of storm runoff were over-estimated by up to 184.2%. The occurence time of peak flow and total runoff volume of storm runoffs simulated were consistent with observed values and the annual runoff volumes were simulated in the error range of less than 5.8%.

  • PDF

A Comparative Analysis of the Accuracy of Areal Precipitation According to the Rainfall Analysis Method of Mountainous Streams

  • Kang, Bo-Seong;Yang, Sung-Kee;Kang, Myung-Soo
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.841-849
    • /
    • 2019
  • The purpose of this study was to evaluate the method of estimating the areal precipitation reflecting the altitude of the mountainous terrain on Jeju Island by comparing and analyzing the areal precipitation using the Thiessen polygon method and the isohyetal method in mountainous streams. In terms of constructing the Thiessen polygon network, rainfall errors occurred in 94.5% and 45.8% of the Thiessen area ratio of the Jeju and Ara stations, respectively. This resulted in large areal precipitation and errors using the isohyetal method at altitudes below 600 m in the target watershed. In contrast, there were small errors in the highlands. Rainfall errors occurred in 18.91% of the Thiessen area ratio of Eorimok, 2.41% of Witseoreum, and 2.84% of Azalea Field because of the altitudinal influence of stations located in the highlands at altitudes above 600 m. Based on the areal precipitation estimation using the Thiessen polygon method, it was considered to be partially applicable to streams on Jeju Island depending on the altitude. However, the method is not suitable for mountainous streams such as the streams on Jeju Island because errors occur with altitude. Therefore, the isohyetal method is considered to be more suitable as it considers the locations of the rainfall stations and the orographic effect and because there are no errors with altitude.