• Title/Summary/Keyword: Mountainous Wetlands

Search Result 33, Processing Time 0.028 seconds

The Discrimination and Vegetation Structure of Several Mountainous Wetlands in Chung-ju and Around Area (충주 및 주변지역 산지습지의 판별 및 식생 구조)

  • Kim, Hyeong Guk;Jeong, Young Sun;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.55-65
    • /
    • 2008
  • This study was surveyed to analyze vegetation structure of mountainous wetlands in Chung-ju city and around area from September to November, 2006. 6 sites of total 15 potential mountainous wetlands were discriminated throughout field survey. By classification system of mountainous wetlands presented in manual of forest wetlands research, types of wetlands were classified into slant and a flat. Many sites were covered with land plants as Pueraria thunbergiana and so on. To understand vegetation structure of mountainous wetlands, Height, DBH (diameter at breast height), DI (Dominance Index), Sociability and Constancy were surveyed and Based on this result, a projection chart was drawn. As results, Salix koreensis in tree layer and Persicaria thunbergii and Impatiens textori in herb layer were surveyed as broadly distributed species. This study is mainly focused on vegetation condition of mountainous wetlands. But, it will be needed studying on classification system of mountainous wetland type and functional assessment for conservation or management of wetlands.

The Identification and Vegetation Structure of Several Mountainous Wetlands in Dan-yang and Around Area (단양 및 주변 산지습지의 판별 및 식생 구조)

  • Kim, Hyeong-Guk;Jeong, Jin-Yong;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • This study was accomplished to identify and analyze vegetation structure of Mountainous Wetlands in Dan-yang and around area, and surveyed from September to November, 2006. 6 sites of total 16 potential Mountainous Wetlands by GIS based wetland forecasting system (Korea National Arboretum, 2006) were identified as wetlands throughout field survey by the indicators such as hydrology, soil and vegetation. By classification system of Korea National Arboretum (2006), types of wetlands were classified into 3 slope-types and 3 flat-types. To understand vegetation structure of wetlands, height, DBH (diameter at breast height), DI (Dominance Index), sociability and constancy were surveyed and the projection diagram and charts ware drawn. As results, Salix koreensis in woody plant layer and Persicaria thunbergiiin and Juncus effusus var. decipiens in herb layer were surveyed as broadly distributed species. The wetlands of Dan-yang around area were similar to those of Chung-ju around area, but the species of plants and hydrology conditions were different. This study is mainly focused on vegetation condition of Mountainous Wetlands. But, further studies on functional assessment for management and restoration of wetlands were necessary.

Distribution Characteristics of Alien Plants by Wetland Types in the Ecologically Outstanding Wetlands of South Korea (국내 생태우수습지의 유형별 외래식물상 현황 및 특성)

  • Chu, Yeounsu;Cho, Kwang-Jin;Kim, Mijeong;Lee, Changsu;Yoon, Jungdo;Lim, Jeoncheol
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.145-159
    • /
    • 2020
  • Wetlands are vulnerable to biological invasion by alien species, because they function as sinks that accumulate excess water, sediments, nutrients, and other contaminants from the surrounding watersheds by disturbance. In this study, to understand the status and characteristics of the alien plants based on the type of wetlands, we classified 24 ecologically outstanding wetlands and analyzed the status of alien flora. A total of 130 alien plants were found in the wetlands, accounting for 11% of the total plant species. Among them, the Asteraceae species was the most diverse, with 40 species. Erigeron annuus and Oenothera ordorata had the highest frequency of occurrence. The species richness of alien plants in the riverine and lacustrine wetlands (average: 30 species) was higher than that in the mountainous palustrine wetlands (average: 10 species). The same results were found in the naturalization index, urbanization index, and ratio of annuals and biennials, which indicate the degree of artificial interference. In the cluster analysis, the riverine and lacustrine wetlands were combined, and only the mountainous palustrine wetlands were separated. The number of alien plants is remarkably low in the mountainous palustrine wetlands, and it is considered to be the influence of Erigeron strigosus, Symphytum officinale, and Bilderdykia convolvulus, not found in the other types of wetlands. In particular, invasive alien plants such as Aster pilosus, Ambrosia trifida, Sicyos angulatus, Ambrosia artemisiifolia var. elatior were found intensively in the riverine wetlands. Therefore, it is considered that a methodical management is urgently required considering the dispersal of alien plants in the riverine and lacustrine wetlands with high artificial interference.

Potential Mapping of Mountainous Wetlands using Weights of Evidence Model in Yeongnam Area, Korea (Weight of Evidence 기법을 이용한 영남지역의 산지습지 가능지역 추출)

  • Baek, Seung-Gyun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-33
    • /
    • 2013
  • Weight of evidence model was applied for potential mapping of mountainous wetland to reduce the range of the field survey and to increase the efficiency of operations because the surveys of mountainous wetland need a lot of time and money owing to inaccessibility and extensiveness. The relationship between mountainous wetland location and related factors is expressed as a probability by Weight of evidence model. For this, the spatial database consist of slope map, curvature map, vegetation index map, wetness index map, soil drainage rating map was constructed in Yeongnam area, Korea, and weights of evidence based on the relationship between mountainous wetland location and each factor rating were calculated. As a result of correlation analysis between mountainous wetland location and each factors rating using likelihood ratio values, the probability of mountainous wetlands were increased at condition of lower slope, lower curvature, lower vegetation index value, lower wetness value, moderate soil drainage rating. Mountainous Wetland Potential Index(MWPI) was calculated by summation of the likelihood ratio and mountainous wetland potential map was constucted from GIS integration. The mountain wetland potential map was verified by comparison with the known mountainous wetland locations. The result showed the 75.48% in prediction accuracy.

An Assessment of the Potential Area of Mountainous Wetland Using AHP (AHP를 이용한 산지습지 가능지역 평가)

  • Moon, Sang Kyun;Koo, Bonhak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.27-43
    • /
    • 2014
  • The purpose of this research is to assess potential area of mountainous wetland by GIS and AHP (Analytic Hierarchy Process). Mountainous wetland is topographically located at high altitude, so it's difficult to approach for researchers. And, it's difficult to investigate systematically because of the insufficient information of mountainous wetland. Therefore, it's necessary to study on potential area of mountainous wetland for systematic and efficient investigation. This research selected slope, wetting index, land-cover map and soil map as assessment items indicating environmental characteristics of mountainous wetland and established them by GIS DB. And, spatial value of mountainous wetland for each assessment item was drawn by existing investigation data and overlap analysis of mountainous wetland. Based on the numerical results of each assessment item, a survey was conducted and relative importance for each assessment item was decided by AHP. As the result, slope was the highest as 0.550 and ground coverage was the lowest as 0.083. The subject of this research was Yangsan-si and Ulsan of Gyeongnam and an analysis was conducted for mountainous wetland in those research areas. As the result, all of wetland was distributed in the range of potential area. And, field survey and literature search were conducted for the point that the distribution of mountainous wetland is expected. As the result, mountainous wetland was distributed. Therefore, mountainous wetland should be excavated through the results of this research and it should be helpful for effective investigation as providing information necessary to the following studies on mountainous wetland.

Development of Digital Terrain Analysis for an Identification of Wetland Area at Mountainous Watershed (산지습지의 수문지형분석 방법론의 개발)

  • Jang, Eun-Se;Lee, Eun-Hyung;Kim, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1473-1483
    • /
    • 2015
  • In this study, a digital terrain analysis had been performed for a mountainous watershed having wetlands. In order to consider the impact for wetland in the flow determination algorithm, the Laplace equation is implemented into the upslope accounting algorithm of wetness computation scheme. The computational algorithm of wetland to spatial contribution of downslope area and wetness was also developed to evaluate spatially distributed runoff due to the presence of wetland. Developed schemes were applied to Wangpichun watershed located Chuncuk mountain at Ulzingun, South Korea. Both spatial distribution of wetness and its histogram indicate that the developed scheme provides feasible consideration of wetland impact in spatial hydrologic analysis. The impact of wetland to downslope propagation pattern is also useful to evaluate spatially distributed runoff distribution.

The Status and Characteristics of Wetlands Created from within Abandoned Rice Paddy Fields in South Korea (유휴농경지에서 발생되는 습지의 현황 및 특성에 관한 연구)

  • Park, Mi-Young;Yim, Yu-Ra;Kim, Kwi-Gon;Joo, Young-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.2
    • /
    • pp.1-15
    • /
    • 2006
  • As the imports of foreign agricultural products are liberalized and the consumption of agricultural products declines, abandoned rice paddy fields continues to rise. However, such abandoned rice paddy fields has not been precisely surveyed yet. In this backdrop, a necessity to develop technology to utilize such abandoned rice paddy fields has emerged. Utilization of abandoned rice paddy fields as wetlands may be a good example. This study aimed to survey the current status and characteristics of wetlands created within abandoned rice paddy fields by selecting abandoned rice paddy fields throughout the nation and conducting field surveys on the sites that had transformed into wetlands. The abandoned rice paddy fields almost transformed into wetland and the types of wetlands transformed from abandoned rice paddy fields were mainly Inland/Moutain/Depression/Abandoned rice paddy fields/Marsh/Phragmites communis community and Inland/Moutain/Depression/Abandoned rice paddy fields/Swamp/Salix koreensis community. Abandoned rice paddy fields that had transformed into wetlands was depending heavily on waterways for water supply than other reservoirs and lakes do. Abandoned rice paddy fields transformed into wetlands was most observed in mountainous area. Abandoned rice paddy fields are because agricultural land is no longer profitable due to international and social changes and is not cultivated as government policy. Wetland period and dimension originated from abandoned rice paddy fields are very various and its surrounding land its mostly forest and the next largest follow roads and rural community. The abandoned rice paddy fields transformed into wetlands is mostly deserted currently. Despite their value as wetlands, no restoration and utilization efforts are made in Korea today. Therefore, it is imperative to conduct a precise current status survey on these areas and introduce management and restoration plans at the government level in the case of important habitats.

Analysis Actual Conditions of Arid Progress and Prevention Management of Hwaeom Wetland in Yangsansi (양산시 화엄늪의 산지화 진행실태 및 예방관리 방안)

  • Lee, Soo-Dong;Kim, Sun-Hee;Kim, Ji-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.498-511
    • /
    • 2012
  • Mountainous wetland have many species such as II grade endangered species of wild flora and fauna(Drosera rotundifolia) and environmental indicator species(Utricularia racemosa, Habenaria linearifolia, Parnassia palustris, Molinia japonica, etc.). Accordingly, the mountainous wetlands is very important. However, most mountainous wetlands will disappear by natural or artificial aridness processes. Thus, it needs to manage mountainous wetland for protecting from aridness. This study has found out the wetland status of the environmental ecology and aridness processes moreover, it has suggested ways of improving wetland conservation plan and wetland aridness management plan. According to the results of topography structure survey, Hwaeom wetland's altitude is ranged within 750~810m(87.4%), and slope is less than $10^{\circ}$. There was ideally suited mountainous wetland. However, the water supply(1.6 meters depth and 0.8 meters wide) was built on under the wetland. For that reason, there was concerned about the aridness processes by sweeping away peat layer and dropping the water level. The distribution area of hygrophyte was narrowed to 6.7% whereas, woody plants and xerophytic plants was achieved a dominant position. If it leaves the situation as it is, the mountainous wetland will be developed next succession as forest ecosystem. Therefore, in order to sustain the mountainous wetland from aridness, it is set to the base direction of conservation and management as main schemes. Moreover, we have suggested that setting the vegetation conservation and management area which considering a ecological vegetation characteristics, managing the ecotone vegetation, setting the buffer zone for protection of ecological core areas, protecting the mountainous wetland indicator species and designating the management vegetation. In conclusion, in order to sustain and maintain a soundly wetland ecosystem, it needs to several management of wetlands damage factors. 1) suppression of the excessive groundwater to basin, 2) stabilization of wetland via hydrologic storage, 3) suppression of changing and transforming wetland into forest by succession via management of xerophytic plants.

Spatial Downscaling Method for Use of GCM Data in A Mountainous Area (산악지역에 GCM 자료를 이용하기 위한 공간 축소방법 개발)

  • Kim, Soojun;Kang, Na Rae;Kim, Yon Soo;Lee, Jong So;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.115-125
    • /
    • 2013
  • This study established a methodology for the application of downscaling technique in a mountainous area having large spatial variations of rainfall and tried to estimate the change of rainfall characteristics in the future under climate change using the established method. The Namhan river basin, which is in the mountainous area of the Korean peninsula, has been chosen as the study area. Artificial Neural Network - Simple Kriging with varying local means (ANN-SKlm) has been built by combining artificial neural network, which is one of the general downscaling techniques, and SKlm technique, which can reflect the geomorphologic characteristics like elevation of the study area. The evaluation of SKlm technique was done by using the monthly rainfalls at six weather stations which KMA(Korea Meteorological Administration) is managing in the basin. The ANN-SKlm technique was compared with the Thiessen technique and ordinary kriging(OK) technique. According to the evaluation result of each technique the SKlm technique showed the best result.

A Study on the Distribution Characteristics of the Small Village Wetlands in Mountainous Rural Area - Case on Geumsan-gun, Chungnam - (산지 읍면지역 소규모 마을습지 분포 특성 연구 - 충남 금산군을 사례로 -)

  • Park, Mi-Ok;Seo, Joo-Young;Yang, Seung-Bin;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.6
    • /
    • pp.37-44
    • /
    • 2019
  • This study was conducted to identify the distribution characteristics of small village wetlands in Geumsan County, an inland mountain zone, and comparing with Seocheon County, a coastal plain area with different ecological environment characteristics. Using Arc-GIS (v10.1) the village wetland code was extracted to derive the possible location of the village wetland, and the final distribution of the village was obtained by performing indoor judging work based on satellite images, aerial photographs, topographical maps, Korea Land Information System (KLIS), land use level, land cover degree (division), and land use status by local surveying and indoor analyzing. Although Geumsan County (576.66km2) is more than 60% larger than Seocheon County (358.04km2), 607 villages in Geumsan County and 570 villages in Seocheon County are capable of making similar levels of 106.5% of wetlands, but only a fraction of those in Seocheon County were found to be 67.6%. The density of the village wetlands was much lower than that of Seocheon County, a coastal plain area, because there were many mountainous areas in Geumsan County, and most of the wetlands temporarily created for water supply were removed during the analysis phase of the Jeongsa Image, so the actual wetlands of the village were judged to be only two-thirds different from those of Seocheon County.