• Title/Summary/Keyword: Mountain slope

Search Result 354, Processing Time 0.027 seconds

On Study on Chatacteristics of Nocturnal Meteorological Parameter at Mountain Slope (연구노트 산사면에서의 야간 기상요소의 특성에 관한 연구)

  • 전병일;박재림;박현철
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.633-637
    • /
    • 1999
  • A series of meterological observation using automation weather station(AWS) carried out to investigate characteristics of nocturnal meteorological parameters for 16~17 June 1998 at Buljeongdong mountain slope, Kyungbuk. Dry temperature at valley was lower than mountain because of high lapse rate at valley, so the strong inversion layer occurrenced at mountain slope for nighttime. Contrary of dry temperature, relative humidity of valley was higher than mountain for nighttime. Wind speed at valley from sunset to next day morning was lower than mountain, but that of valley after sunrise was higher than mountain. Wind direction at valley for all observation time were southeasterlies(SE), that of mountain for nighttime were northeasterlies(NE) or northnorthwesterlies(NNW), and that of mountain after sunrise were irregular. Vapor pressure at valley for all observation time was higher mountain, particularly the difference was high for nighttime.

  • PDF

Slope Stability Assessment Induced by Variation in Mountain Topography and Rainfall Infiltration (산지지형 및 강우 침투양상 변화에 따른 산지사면 안정성 평가)

  • Kim, Man-Il;Lee, Seung-woo;Kim, Byung-Sik
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • Approximately 64 percent of Korean territory is covered with mountains, and there is occurred a continuous mountain disaster such as landslide, debris flow and slope failure around mountain slopes due to heavy rainfall and typhoon in the summer season. Even in such a reality, the development of mountain areas is being carried out through the development and expansion of social infrastructures centered on mountain areas, but systematic management is insufficient. Constructions of a forest road facility for mountain slopes can be a cause of mountain disasters intensively in the summer season due to artificially changing the mountain area. In this unstable mountain environment, efforts to build a disaster-resistant environment are urgently needed. This research is to analyze the stability of mountain slopes according to soil depth (1~5 m) and mountain slope ($20{\sim}60^{\circ}$) considering the characteristics of rainfall infiltration under extreme rainfall conditions. As a result, the stability of the mountain slope was found to be different according to the depth of soils and the saturation area of the soil layer. As well as the stability of the mountain area was found to be lower than that of the natural mountain area. Specially, rainfall infiltration occurs at the upper slope of the forest road. For this reason, the runoff phenomenon of rainfall infiltration water occurs clearly when the depth of soil layer is low.

Slope Analysis of Mountain Trail Using Mobile GPS (휴대용 GPS에 의한 등산로 경사분석)

  • Lee, Hye-Suk;Jung, Gil-Sub;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.81-90
    • /
    • 2009
  • Mountain trails play an important role in the daily life and health of the citizens, and also are major areas for recreation operators strive to balance the needs of pedestrian with the needs of wildlife and health improvement. In this view point, this research aims at analyzing the slope of mountain trails using mobile GPS and suggesting the suitable path to citizens for improving health. The result shows that the trail slope analysis by using mobile GPS could be effectively evaluated the degree of walk difficulty.

  • PDF

Evolution of Wind Storm over Coastal Complex Terrain (연안복합지형에서 바람폭풍의 진화)

  • Choi, Hyo;Seo, Jang-Won;Nam, Jae-Cheol
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.865-880
    • /
    • 2002
  • As prevailing synoptic scale westerly wind blowing over high steep Mt. Taegulyang in the west of Kangnung coastal city toward the Sea of Japan became downslope wind and easterly upslope wind combined with both valley wind and sea breeze(valley-sea breeze) also blew from the sea toward the top of the mountain, two different kinds of wind regimes confronted each other in the mid of eastern slope of the mountain and further downward motion of downlsope wind along the eastern slope of the mountain should be prohibited by the upslope wind. Then, the upslope wind away from the eastern slope of the mountain went up to 1700m height over the ground, becoming an easterly return flow in the upper level of the sea. Two kinds of circulations were detected with a small one in the coastal sea and a large one from the coast toward the open sea. Convective boundary layer was developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west, while a thickness of thermal internal boundary layer(TIBL) form the coast along the eastern slope of the mountain was only confined to less than 200m. After sunset, under no prohibition of upslope wind, westerly downslope wind blew from the top of the mountain toward the coastal basin and the downslope wind should be intensified by both mountain wind and land breeze(mountain-land breeze) induced by nighttime radiative cooling of the ground surfaces, resulting in the formation of downslope wind storm. The wind storm caused the development of internal gravity waves with hydraulic jump motion bounding up toward the upper level of the sea in the coastal plain and relatively moderate wind on the sea.

Walking path design considering with Slope for Mountain Terrain Open space

  • Seul-ki Kang;Ju-won Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.103-111
    • /
    • 2023
  • Mountains area, especially walking in open space is important for special active field which is based on mountain terrain. Recent research on pedestrian-path includes elements about pedestrian and various environment by analyzing network, but it is mainly focusing on limited space except for data-poor terrain like a mountain terrain. This paper proposes an architecture to generate walking path considering the slope for mountain terrain open space through virtual network made of mesh. This architecture shows that it reflects real terrain more effective when measuring distance using slope and is possible to generate mountain walking path using open space unlike other existing services, and is verified through the test. The proposed architecture is expected to utilize for pedestrian-path generation way considering mountain terrain open space in case of distress, mountain rescue and tactical training and so on.

Effects of Slope Exposure and Altitude on Productivity of Orchardgrass in Mountain Pasture (산지초지에 있어서 경사방향 및 표고가 orchargrass의 생산성에 미치는 영향)

  • Woo-Bock Chun;Kwang-Hyun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.3
    • /
    • pp.137-140
    • /
    • 1990
  • This study was carried out to investigate the effects of slope exposure and altitude on the dry matter yield and on the grass quality in mountain pasture for 2-year period from 1986 to 1987. 1. Dry matter yield and crude protein content of grasses by slope exposure in mountain pasture were higher on the northern slope than that on the southern slope and, on both sides of slope, were increased as the altitude was high. 2. Neutral detergent fiber(NDF) and acid detergent fiber(ADF) contents, and in vitro dry matter digestibility were not different between different slope exposures and between different altitudes.

  • PDF

Excessive soil water stress responses of sesame (Sesamum indicum L.) and perilla (Perilla frutescens L.) cultivated from paddy fields with different topographic features

  • Ryu, Jongsoo;Baek, Inyeoul;Kwak, Kangsu;Han, Wonyoung;Bae, Jinwoo;Park, Jinki;Chun, Hyen Chung
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.749-760
    • /
    • 2018
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, the Korean government has pursued cultivating upland crops in paddy fields to reduce overproduced rice in Korea. For this policy to succeed, it is critical to understand the topographic information of paddy fields and its effects on upland crops cultivated in the soils of paddy fields. The objective of this study was to characterize the growth properties of sesame and perilla from paddy fields with three soil topographic features and soil water effects which were induced by the topographic features of the sesame and perilla. The crops were planted in paddy fields located in Miryang, Gyeongnam with different topographies: mountain foot slope, local valley and alluvial plain. Soil water contents and groundwater levels were measured every hour during the growing season. The paddy field of the mountain foot slope was significantly effective in alleviating wet injury for the sesame and perilla in the paddy fields. The paddy field of the mountain foot slope had a decreased average soil water content and groundwater level during cultivation. Stress day index (SDI) from the alluvial plain paddy field had the greatest values from both crops and the smallest from the ones from the paddy field of the mountain foot slope. This result means that sesame and perilla had the smallest stress from the soil water content of the paddy field on the mountain foot slope and the greatest stress from the soil water content of the alluvial plain. It is important to consider the topography of paddy fields to reduce wet injury and to increase crop yields.

Forest Degradation and Spatial Distribution of Forest Land Development (산지개발의 공간분포와 산림훼손)

  • Yu, Jaeshim;Choi, Wontae;Lee, Sanghyuk;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.101-110
    • /
    • 2016
  • Development activities in forest areas are analysed based on degree of slope, altitude, land cover, and prefectures in order to improve the capacity of existing regulations of 'feasibility of forest land conversion' and 'assessment of forest land characteristics' in this research. 959 land based developments between year 2007 and 2013 have been analysed. A development site includes over 50% of forest is categorized as a forest type, degree of slope is steeper than $8.5^{\circ}$ as mountain type, and a development included in the both categories as combined type. Distribution characteristics of the above three types are analysed by development categories and regions adopting Relative Mountain Development Index(RMDI). In results, 44.94% of total development activities have been carried out in Gyeongsang Do in order of urban development, industrial complex, sports facilities, and soil and stone collection quarrying. Developments less than $0.3km^2$ which are exempt from the feasibility of forest land conversion regulation consist 86 cases of forest type, 78 cases in mountain type, and 78 cases in combined type. SAI by slope range showed the highest value of 1.55 in less than $5^{\circ}$ and the lowest value of 0.69 between $20^{\circ}-25^{\circ}$. RMDI value in Gyeongsang Do where mountain ratio is 67.05% appeared 1.17, which is 5 times more than Gangwon Do where mountain area ratio is 81.30%, and 2 times more than Chungchung Do where mountain area ratio is 51.24%. Development activities in forestland in Korea showed unequal distributions and 26% of those developments were not subjected to the feasibility of forest land conversion regulation.

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

Advanced Mountain Clustering Method (개선된 산 클러스터링 방법)

  • 이중우;권순학;손세호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.121-124
    • /
    • 2000
  • We introduce an advanced mountain clustering method which uses a normalized data space, a gaussian type mountain function and a deconstruction method using mountain slope. This is more useful than Yagers mountain method because it needs just one parameter to tune instead of three and finds out more resonable cluster centers. Computational examples are presented to show the validity of the advanced mountain method.

  • PDF