• Title/Summary/Keyword: Mountain hazard

Search Result 56, Processing Time 0.026 seconds

Analysis of Slope Hazard-Triggering Rainfall Characteristics in Gangwon Province by Database Construction (DB구축을 통한 강원지역 사면재해 유발강우특성 분석)

  • Yune, Chan-Young;Jun, Kyoung-Jea;Kim, Kyung-Suk;Kim, Gi-Hong;Lee, Seung-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.27-38
    • /
    • 2010
  • In every summer season, most of the slope failures and debris flows occurr due to seasonal rain, typhoon, and localized extreme rainfall in Gangwon Province where 83% of the area is of mountain region. To investigate the slope-hazard triggering rainfall characteristics in Gangwon Province, slope hazard data, precipitation records, and forest fire data were collected and the DATABASE was constructed. Analysis results based on the DATABASE showed that many slope hazards occurred when there was little rainfall and the preceding rainfall had more effect on the slope hazard than the rainfall intensity at the day of hazard. It also showed that the burned area by forest fire was highly susceptible to slope hazard with low rainfall intensity, and the slope hazard in burned area showed highest frequency, especially, under the rainfall below 2-year return period.

Development of Permanent Displacement Model for Seismic Mountain Slope (지진 시 산사면의 영구변위 추정식 개발)

  • Lee, Jong-Hoo;Park, Duhee;Ahn, Jae-Kwang;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • Empirical seismic displacement equations based on the Newmark sliding block method are widely used to develop seismic landslide hazard map. Most proposed equations have been developed for embankments and landfills, and do not consider the dynamic response of sliding block. Therefore, they cannot be applied to Korean mountain slopes composed of thin, uniform soil-layer underlain by an inclined bedrock parallel to the slope. In this paper, a series of two-dimensional dynamic nonlinear finite difference analyses were performed to estimate the permanent seismic slope displacement. The seismic displacement of mountain slopes was calculated using the Newmark method and the equivalent acceleration time history. The calculated seismic displacements of the mountain slopes were compared to a widely used empirical displacement model. We show that the displacement prediction is significantly enhanced if the slope is modeled as a flexible sliding mass and the amplification characteristics are accounted for. Regression equation, which uses PGA, PGV, Arias intensity of the ground motion and the fundamental period of soil layer, is shown to provide a reliable estimate of the sliding displacement. Furthermore, the empirical equation is shown to reliably predict the hazard category.

Evaluation on Risk Assessment for Landslide Hazard of Soil Slope Using the Checklists as a Preliminary Investigation Method (점검표를 이용한 토질사면 산사태 예비조사 방법 평가)

  • Kim, Jae Min;Choi, Jung Chan
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The objective of this study is to evaluate landslide hazard susceptibility and produce the landslide hazard maps for soil slope using checklists as a preliminary investigation method. Tables, proposed by NDMI (National Disaster Management Institute), are applied for slope stability assessment, and are comprised of checklists on soil slopes. Database including engineering properties of soil is constructed through the field survey and results from previous studies for The Mt. Hwangryoeng area at center of Busan. All data related to creating the thematic maps was carried out using ArcGIS 10.0. Results from using this method indicated that soil slope are evaluated from very stable to stable. Moderate stability has been partially presented along the edge of mountain. Results from landslide hazard maps can be used to prevent damage from landslides and facilitate appropriate land use planning.

Susceptibility Analysis for Rock Slope Hazard Using the Empirical Method (경험론적 방법을 이용한 암반사면재해 취약성 분석)

  • Kim, Jae Min;Choi, Jung Chan
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.473-486
    • /
    • 2014
  • The objective of this study is to produce the rock slope hazard map on the Mt. Hwangryeong located at center of Busan Metropolitan City for evaluating the rock slope hazard susceptibility. The Mt. Hwangryoeng is located between Dongrae and Ilkwang faults and consists of various rocks such as sedimentary rock, andesitic volcanic rock, andesite, gabbro and granitic rocks. Thematic maps were carried out using ArcGIS for Database including the orientations and density of joints, strength of rock constructed through the field survey and results from previous studies. Also, rock slope hazard susceptibility for the Mt. Hwangryoeng area was studied using empirical method through checklists proposed by NDMI (National Disaster Management Institute). Results from using the empirical method indicated that rock slopes are evaluated from very stable to stable, but moderate stability has been partially presented along the edge of the mountain area.

Hazard Risk Assessment for National Roads in Gangneung City (강릉지역 국도의 재해위험성 평가)

  • Kim, Gi-Hong;Won, Sang-Yeon;Youn, Jun-Hee;Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.33-39
    • /
    • 2008
  • Typhoon Lusa in 2002 and Typhoon Maemi in 2003 caused the worst damage of landslide and debris flow to Gangwon-do. This damage includes severe damage in riverside road. The damage register indicates that this damage is concentrated on mountain areas in Gangwon-do. In recent years, the studies on GIS application to predicting landslide and debris flow have been progressing actively. Landslide risk map managed by The Forest Service is the representative one. In this study, we generated landslide and debris flow hazard maps using statistical analysis and deterministic analysis in Gangnung area where Typhoons caused severe damage to riverside roads. We built damage point GIS DB from damage registers of National Road Maintenance Agency and field survey, and verified accuracy of landslide and debris flow hazard maps using GIS methods.

  • PDF

Analysis of Hazard Areas by Sediment Disaster Prediction Techniques Based on Ground Characteristics (지반특성을 고려한 토사재해 예측 기법별 위험지 분석)

  • Choi, Wonil;Choi, Eunhwa;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.47-57
    • /
    • 2017
  • In this study, a predictive analysis was conducted on sediment disaster hazard area by selecting six research areas (Chuncheon, Seongnam, Sejong, Daejeon, Miryang and Busan) among the urban sediment disaster preliminary focus management area. The models that were used in the analysis were the existing models (SINMAP and TRIGRS) that are commonly used in predicting sediment disasters as well as the program developed through this study (LSMAP). A comparative analysis was carried out on the results as a means to review the applicability of the developed model. The parameters used in the predictions of sediment disaster hazard area were largely classified into topographic, soil, forest physiognomy and rainfall characteristics. A predictive analysis was carried out using each of the models, and it was found that the analysis using SINMAP, compared to LSMAP and TRIGRS, resulted in a prediction of a wider hazard zone. These results are considered to be due to the difference in analysis parameters applied to each model. In addition, a comparison between LSMAP, where the forest physiognomy characteristics were taken into account, and TRIGRS showed that similar tendencies were observed within a range of -0.04~2.72% for the predicted hazard area. This suggests that the forest physiognomy characteristics of mountain areas have diverse impacts on the stability of slopes, and serve as an important parameter in predicting sediment disaster hazard area.

Geographic Information Systems(GIS) Use in Forest Pest Management : A Simulated Study on Mountain Pine Beetle Infestation (지리정보(地理情報)시스템(GIS) 이용(利用)과 산림(山林) 병충해(病蟲害) 관리(管理) : 소나무 좀벌레의 모형적(模型的) 예(例))

  • Lee, Kyu Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.2
    • /
    • pp.168-176
    • /
    • 1989
  • Recent development of geographic information systems(GIS) provides a great deal of potential in handling a variety of spatial data required by forest resource managers. This study is designed to identify a possible GIS application in forest pest management. Several mountain pine beetle risk assessment parameters(stand characteristics, weather conditions, and topographic factor) were spatially analyzed through computer map overlaying operations in order to estimate the hazard level of the pest damage. In addition, the expected infestation route from an initially infected forest stand was located through further may analysis operations(distance measurement and connectivity analysis). Although current GIS technology may have a few limitations in operational situations, the computer based GIS has been proven as an invaluable tool to resource managers by providing flexible spatial data handing capabilities.

  • PDF

Analysis of Slope Characteristics of Solar Power Plants in Gangwon Province based on Geospatial Database (산지 태양광 발전시설의 지형 공간 데이터베이스 구축 및 사면 특성 분석)

  • Kim, Ji-Ho;Song, Ki-Il;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.155-167
    • /
    • 2024
  • In Korea, many solar power generation facilities are being installed in mountainous regions, which cover 70% of the country' area. This study aimed to analyze the slope characteristics of solar power generation facilities installed in such regions, considering the potential for mountain hazards. A database was created for 663 mountainous solar power generation facilities in Gangwon province, including data on area, slope angle, slope direction, altitude, and soil depth. GIS techniques were used to analyze the slope characteristics of these facilities. The area of solar power generation facilities installed in the Gangwon Mountains ranges from 606 to 320,718 m2. We found that a notable number of these facilities have slopes exceeding the permit standards for mountain solar power installations and steep slope criteria. In addition, most facilities are located south, making them vulnerable to landslides. The correlation between soil depth and slope or topographical altitude was found to be quite low.

Investigation on Cloud Properties for Fog Modification at Daegwallyeong Mountains (대관령 산악지역 안개조절을 위한 구름특성 조사)

  • Yang, Ha-Young;Oh, Sung-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.45-56
    • /
    • 2005
  • Cloud meteorological properties over Daegwallyeong mountain area were analyzed for experimental cloud seeding which related to a feasibility study of fog modification. The cloud seeding for fog modification has been refocused to using hygroscopic chemical to dissipate warm fog. In this study, the statistics of fog observations were analyzed and discussed. Fog properties mostly showed the Summer warm fog, the early morning occurrences before to 6 o'clock AM, and 7 to 9 o'clock dissipation in the statistics. In the Spring and Winter season an easterly wind produced cold fog which is good applied with AgI seeding agents. Extrapolation of these results suggests that the suitable seeding method and material for fog modification will be introduced from the actual seeding experiments in the cold and warm fog.

Experiments Study on Critical Strain Properties of Sedimentary Rocks (실험적 연구를 통한 퇴적암의 한계변형률 특성에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Jin, Guang-Ril;Park, Jang-Ho;Park, Si-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.211-219
    • /
    • 2008
  • The hazard warning levels are necessary for the rational design and safety construction of underground space, as mountain and urban tunnel. Sakurai provided the hazard warning levels for assessing the stability of tunnels using the critical strain of rock mass, which is defined as a ratio between uni-axial compressive strength and the Young's modulus. The concept of critical strain guidelines is introduced in this study for the assessment of tunnel safety during excavation. Moreover, in this paper, the critical strain properties of sedimentary rock in Korea has investigated and analysed in detail by Lab. test, as the uniaxial compression tests. Finally, critical strain properties of sedimentary rock is discussed the relationship of failure strain values, uniaxial compression strengths and Young's modulus.

  • PDF