• 제목/요약/키워드: Motor-battery model

검색결과 55건 처리시간 0.029초

자동차 트랜스미션 스타터-제너레이터의 수학적 모델 개발 (A Mathematical Model Development of Automotive Transmission Starter-Generator)

  • 장봉춘
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.123-128
    • /
    • 2006
  • The proposed mathematical model of the starter-generator system incorporates the motor speed, battery voltage and the desired current to estimate the moment generation capabilities of the starter-generator and the actual current of the battery system. The fundamentals for this mathematical modeling are the simulated results of the experimental data. These pertinent data are used in establishing the governing equations for the determination of motor moments, actual battery currents and efficiencies of the system's operation at different loading characteristics and speed regions. The derived equations will be used into simulation programs to predict the fuel efficiency, vehicle characteristics of a hybrid electric vehicle equipped with a transmission starter-generator which will be developed.

Electric Model of Li-Ion Polymer Battery for Motor Driving Circuit in Hybrid Electric Vehicle

  • Lee, June-Sang;Lee, Jae-Joong;Kim, Mi-Ro;Park, In-Jun;Kim, Jung-Gu;Lee, Ki-Sik;Nah, Wan-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.932-939
    • /
    • 2012
  • This paper presents an equivalent circuit model of a LIPB (Li-Ion Polymer battery) for Hybrid Electric Vehicles (HEVs). The proposed equivalent circuit can be used to predict the charging/discharging characteristics in time domain as well as the impedance characteristic analysis in frequency domain. Based on these features, a one-cell model is established as a function of Depth of Discharge (DoD), and a 48-cell model for a battery pack was also established. It was confirmed by experiment that the proposed model predict the discharging and impedance (AC) characteristics quite accurately at different constant current levels. To check the usefulness of the proposed circuit, the model was used to simulate a motor driving circuit with an Insulated Gate Bipolar Transistor (IGBT) inverter and Brushless DC (BLDC) motor, and it is confirmed that the model can calculate the battery voltage fluctuation in time domain at different DoDs.

최소 자승법을 이용한 하이브리드용 리튬이온 배터리 모델링 및 특성분석 (Modeling and Characteristic Analysis of HEV Li-ion Battery Using Recursive Least Square Estimation)

  • 김호기;허상진;강구배
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.130-136
    • /
    • 2009
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of Li-ion battery indicates highly dependant of temperatures. The system pole and internal resistance changes 6.6 and 18 times at $-20^{\circ}C$, comparing with those at $25^{\circ}C$, respectively. These results will be utilized on constructing model-based state observer or an on-line identification and an adaptation of the model parameters in battery management systems for hybrid electric vehicle applications.

도심주행 패턴에 따른 소형 전기자동차 최적화 전략 (Optimized Strategy of Neighborhood Electric Vehicle with Driving Schedules)

  • 길범수;조종표;표영덕;김강출
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.53-59
    • /
    • 2010
  • The Developing & Producing of Eco-Friendly vehicle have been more incremented, as People appreciate the importance of Earth Environment Conservation. The needs of Neighborhood Electric Vehicle(NEV) that suits Current people's short drive distance is incremented. In this Paper, we define Neighborhood Electric Vehicle through out National Highway Traffic Safety Administration of United States of America's regulation and explain motor and battery of primary constituents of that. We used MATLAB and ADVISOR 200 programs for Simulation, and propsed NEV's Model that tow people can be got in. In this Model, the battery is Lead-acid battery(72V, 85Ah) and the motor is 8kW permanent magnet synchronous motor(PM motor). We compared change of driving range of NEV through out non-changing speed Driving(10km/h, 20km/h, 30km/h, 40km/h) and Manhattan driving schedule.

배터리 전압 강하를 고려한 드론 모터 속도 제어기 개발 (Development of a Motor Speed Controller of Drones Considering Voltage Drop of Battery)

  • 이성희;윤보람;김덕엽;김황수;이우진
    • 정보과학회 논문지
    • /
    • 제44권6호
    • /
    • pp.601-606
    • /
    • 2017
  • 최근 드론 산업의 발전으로 일상생활 중에서도 드론을 비행하는 모습을 자주 관찰할 수 있다. 이러한 드론에 주로 사용되는 리튬폴리머 배터리는 사용 시간이 흐름에 따라 배터리의 전압 강하가 일어나 동일한 드론 조종 신호에도 드론 모터의 속도가 불안정해지는 문제점이 발생한다. 드론 모터 속도의 불안정은 고도 유지를 불가능하게 하여 드론 기체가 상승과 하강을 반복하게 된다. 이러한 문제를 해결하기 위해서 기존의 방법은 배터리 방전에 따른 보상기를 추가하거나 시스템 제어 모델을 변경하였다. 하지만 이러한 기법은 하드웨어로 구현된 모듈을 사용하거나 모터 종류 및 실험 결과에 종속적으로 구현되기 때문에 드론 기체에 사용되는 모터에 맞게 새로운 모듈이 구현되어야하는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 드론의 펌웨어에 배터리 전압 강하를 고려하는 모터 속도 제어기를 구현하여 드론의 비행 안정성을 확보한다.

Integrated Model of Power Electronics, Electric Motor, and Gearbox for a Light EV

  • Hofman, Isabelle;Sergeant, Peter;Van den Bossche, Alex;Koroglu, Selim;Kesler, Selami
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1640-1653
    • /
    • 2015
  • This study presents a model of a drivetrain for an integrated design of a light electric vehicle (EV). For the drivetrain of each front wheel of the single-person, battery-powered EV tricycle consists of a battery, an inverter, and an outer rotor permanent magnet synchronous motor (PMSM), which is connected to an in-wheel gearbox. The efficiency of the inverter, motor, and gearbox is analyzed over the New European Driving Cycle. To calculate the losses and efficiency of the PMSM, the power electronics in the inverter and gearbox are used. The analytical models provide a fast, but less accurate result, useful for optimization purposes. To accurately predict the efficiency of the PMSM, a finite element model is used. The models are validated by test setups. Correspondingly, a good agreement between the measurements and the calculated results is achieved. A parameter study is performed to investigate the influence of the detailed component parameters (i.e., outer rotor radius, gear ratio, and number of pole pairs and stator slots) on the average efficiency of the drivetrain.

혈중 목표 농도 자동 조절기(TCI) 개발 PART2: 시스템 구현 및 평가 (Development of Target-Controlled Infusion system in Plasma Concentration. PART2: Design and Evaluation)

  • 안재목
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권1호
    • /
    • pp.45-53
    • /
    • 2003
  • Based on the 4-compartmental pharmacokinetic model developed in PART1, target-controlled infusion(TCI) pump system was designed and evaluated. The TCI system consists of digital board including microcontroller and digital signal process(DSP), analog board, motor-driven actuator, user friendly interface, power management and controller. It provides two modes according to the drugs: plasma target concentration and effect target concentration. Anaesthetist controls the depth of anaesthesia for patients by adjusting the required concentration to maintain both plasma and effect site in drug concentration. The data estimated in DSP include infusion rate, initial load dose, and rotation number of motor encoder. During TCI operation, plasma concentration. effect site concentration, awaken concentration, context-sensitive decrement time and system error information are displayed in real time. Li-ion battery guarantees above 2 hours without power line failure. For high reliability of the system, two microprocessors were used to perform independent functions for both pharmacokinetic algorithm and motor control strategy.

전기자동차 구동용 모터를 위한 전류 제어 기술 (An Overview: Current Control Technique for Propulsion Motor for EV)

  • 이희광;남광희
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.388-395
    • /
    • 2016
  • Electric vehicles (EV) and hybrid EVs (HEV) are designed and manufactured by GM, Toyota, Honda, and Hyundai motors. The propulsion system design process for EV requires integrating subsystem designs into an overall system model to maximize the performance of a given propulsion architecture. Therefore, high-power density and high-torque density are important attributes required for EV applications. To improve torque and power density, propulsion motors are designed for saturation during high-torque operation. The nonlinearity associated with core saturation is modeled by incorporating the cross-coupling inductances, which also behave nonlinearly. Furthermore, in EV environments, the battery is directly connected to the DC link, and the battery changes depending on the state of charge. It will be onerous if as many optimal current commands as different $V_{dc}$ were made. This paper presents the optimal current commands in the various operating condition and the current control technique in EV environments.

전기자동차 전력 시스템의 모델링 및 시뮬레이션 (Modeling and Simulation of Electrical Power System of Electric Vehicle)

  • 이재문;조보형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.355-358
    • /
    • 1996
  • Electrical Power System (EPS) of Electric Vehicle which consists of batteries, motor and driving subsystem, has been modeled. A battery model is modeled with an electrical circuit representing a characteristics of real battery. Driving subsystem is modeled as three different level namely exact, average and functional models. Load profile includes road information, speed profile and EV mechanical parameters, which are incorporated into a reference torque in the driving subsystem model. A system model is integrated to simulate the performance of electric vehicle such as energy balance, battery status, and electrical stress of each subsystem.

  • PDF

EV/HEV용 모터 구동 시스템의 Noise 예측을 위한 통합 시뮬레이션에 대한 연구 (Total Simulation for the Noise Prediction of Motor Driving System in EV/HEV System)

  • 권오현;이재중;김광호;안지현;권혁수;김미로;정상용;나완수
    • 한국전자파학회논문지
    • /
    • 제24권7호
    • /
    • pp.710-721
    • /
    • 2013
  • 본 연구에서는 배터리 내부의 회로 모델링, 다이나믹 다이오드를 이용한 인버터, 2-D EM Tool을 이용한 모터의 해석 결과를 합친 EV/HEV용 모터 구동시스템의 통합 시뮬레이션 방법을 제안한다. 배터리의 모델링을 위해서 충전상태(DOD: Depth of Discharge)에 따라서 변화하는 인덕턴스, 저항, 캐패시턴스 성분을 AC 임피던스 분석법을 이용하여 산출하였으며, 역회복 시간이 반영된 다이나믹 다이오드를 사용하여 인버터를 모델링하였다. 모터의 특성은 매입형 영구 자석 모터의 EM 필드 해석을 Ansys Maxwell 15.0 버전을 사용하여 모델링하였다. 즉, 배터리 및 인버터의 회로 모델과 EM 필드 해석을 통한 모터 해석 모델을 통합한 시뮬레이션 방법을 제시하고, 전체의 통합 모델링을 Ansys Simplorer 10.0 버전을 사용하여 수행하였다. 그리고 이를 통하여 EV/HEV 모터 구동회로의 전도성 노이즈 스펙트럼 분석을 수행하였고, 그 분석 결과가 정성적으로 유의미함을 확인하였다.