• Title/Summary/Keyword: Motor moment

Search Result 129, Processing Time 0.029 seconds

Analysis and Experimental Verification of Linear Motor Moment for Precision Machine Tools (정밀 공작기계용 리니어모터 모멘트의 해석 및 실험적 검증)

  • Cho, Young-Taek;Cho, Han-Wook;Lee, Seung-Han
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.884-885
    • /
    • 2015
  • This paper presents the characteristic analysis and experiment of pitching moment in permanent magnet linear synchronous motor (PMLSM) for precision machine tools. In this paper, we define force characteristics of the moment and the moment analysis by the finite element method. Manufacture experiment and we will compare the results of finite element analysis and experimental results.

  • PDF

Comparison of Electromagnetic Force Characteristics and Experiment of Pitching Moment in Permanent Magnet Linear Synchronous Motor According to the Moving Iron Core and Stator Topology (철심형 이동자와 고정자의 형상에 따른 영구자석 선형 동기전동기의 전자기력 특성 비교 및 피칭 모멘트 실험)

  • Lee, Seung-Han;Cho, Han-Wook;Khim, Gyungho;Oh, Jeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1695-1702
    • /
    • 2015
  • This paper presents the characteristic analysis and experiment of force characteristics in permanent magnet linear synchronous motor for accuracy prediction of linear motion machine tools. In particular, the pitching moment resulting from attraction force ripple has been analysed and tested. Firstly, we analysed the characteristics of detent force, attraction force, and pitching moment in permanent magnet linear synchronous motor according to the design techniques such as auxiliary teeth, chamfering, and permanent magnet skewing. In addition, we suggested the experimental set for measurement of pitching moment. Finally, the results from measurement shows the good agreement with those obtained from finite element analysis results.

A Study on the Robust Speed Control Characteristics of Induction Motor Using State Observer (상태 관측기를 이용한 유도전동기의 강인한 속도 제어특성에 관한 연구)

  • 이성근;노창주;김윤식;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.503-511
    • /
    • 1997
  • In 3 phase induction motor control system, the speed control using the load torque observer becomes robust against disturbances by means of a feed-forward control of the estimated load torque component. In case of variation of inertia moment, the estimated load torque has error because the observer uses the nominal inertia to estimate the load torque. And so, it is difficult to obtain good speed control characteristics. This paper has two study target strategy. First, we executes feed-forward control with the load torque observer when motor inertia has nominal value and compare it with conventional PI con¬trol. The second strategy estimates inertia moment error using the load torque observer when inertia moment change. The proposed two strategy is confirmed through the computer simulations and the experimental implementations by TMS320C31 microprocessor.

  • PDF

Investigation of Cogging Effect in Bisymmetric Dual Iron Core Linear Motor Stage (대칭구조 철심형 리니어모터 이송계에서의 코깅현상에 관한 연구)

  • Oh, Jeong-Seok;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.115-121
    • /
    • 2008
  • This paper presents bisymmetric dual iron core lineal motor stage for heavy-duty high precision applications such as large area micro-grooving machines or high precision roll die machines. In this stage, two iron core linear motors are installed in laterally symmetric way to cancel out the attractive forces. Main focus was given to analyzing the effect of cogging force and moment for two different layouts, which are symmetric and half-pitch shifted ones. Experimental results showed that the symmetric layout is more adequate for high precision applications because of its clear moment cancellation effect. It was also verified that the effect of the residual cogging moment can be suppressed further by increasing the bearing stiffness. One problem of the symmetric layout is added cogging force which hinders smooth motion, but its effect was relatively small compared with that of moment cancellation.

Inertia Identification Algorithm for High Performance Speed Control of Electric Motor (고성능 전동기 속도제어를 위한 관성추정 알고리즘)

  • Lee Sang-Cheol;Kim Heung-Geun;Choi Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.436-442
    • /
    • 2005
  • This paper proposes an estimation algorithm to find the moment of inertia, which is essential to design high performance controller for motor drive system. The algorithm finds the moment of inertia observing the position error signal, which contains an error information of moment of inertia, generated by speed observer. Moreover, the proposed algorithm is easily realized in the observer-based speed detection method. The simulation and experimental results are also presented to confirm the performance of moment of inertia estimation method, which shows that the moment of inertia converges to the actual value within several seconds. The speed control responses and the designed speed controller performance match well.

Highly Agile Actuator Development Status of an 800 mNm Control Moment Gyro (CMG)

  • Goo-Hwan Shin;Hyosang Yoon;Hyeongcheol Kim;Dong-Soo Choi;Jae-Suk Lee;Young-Ho Shin;Eunji Lee
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.322-332
    • /
    • 2023
  • Satellite attitude-control actuators are equipped with a reaction wheel for three-axis attitude control. The reaction wheel rotates a motor inside the actuator to generate torque in the vector direction. When using the reaction wheel, there are restrictions on the torque values generated as the motor rotates. The torque value of the reaction wheels mounted on small satellites is approximately 10 mNm, and high values are not used. Therefore, three-axis attitude control of a small satellite is possible using a reaction wheel, but this method is not suitable for missions that require rapid attitude control at a specific time. As a technology to overcome the small torque value of the reaction wheel, the control moment gyro (CMG) is currently in wide use as a rapid attitude-control actuator in space satellites. The CMG has an internal gimbal mounted at a right angle to the rotation motor and generates a large torque value. In general, when the gimbal operates, a torque value approximately 100 times greater is generated, making it suitable for rapid posture maneuvering. Currently, we are developing a technology for mounting a controlled moment gyro on a small satellite, and here we share the development status of an 800 mNm CMG.

Development of 100Nm-class Control Moment Gyroscopes for Industrial Applications (100Nm급 산업용 제어모멘트자이로 개발)

  • Lee, Seon-Ho;Kim, Dae-Kwan;Kim, Yong-Bok;Yong, Ki-Lyuk;Choi, Dong-Soo;Park, Do-Hwan;Kim, Il-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2015
  • The control moment gyroscope(CMG) which is well known as an effective high-torque-generating device is applicable to space vehicles, airplanes, ships, automobiles, robotics, etc. for attitude stabilization and maneuver. This paper deals with the overall details of 100Nm-class CMG development for various industrial applications, and provides the activities and results associated with the CMG system-level requirement analysis, the motor subsystem design/manufacturing/integration, the construction of ground support equipment, and the performance test and evaluation. The performance test reveals that the CMG generates the torque output more than 120Nm in as-designed operation of spin motor and gimbal motor.

A Mathematical Model Development of Automotive Transmission Starter-Generator (자동차 트랜스미션 스타터-제너레이터의 수학적 모델 개발)

  • Jang BongChoon;Karnopp Dean C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.123-128
    • /
    • 2006
  • The proposed mathematical model of the starter-generator system incorporates the motor speed, battery voltage and the desired current to estimate the moment generation capabilities of the starter-generator and the actual current of the battery system. The fundamentals for this mathematical modeling are the simulated results of the experimental data. These pertinent data are used in establishing the governing equations for the determination of motor moments, actual battery currents and efficiencies of the system's operation at different loading characteristics and speed regions. The derived equations will be used into simulation programs to predict the fuel efficiency, vehicle characteristics of a hybrid electric vehicle equipped with a transmission starter-generator which will be developed.

Development of Integrated Control Logic of Wheel Motor Drive Electric Bus considering Stability and Driving Performance (휠 모터 구동 전기 버스의 차량 안정성 및 주행 성능을 고려한 통합 제어 로직 개발)

  • Jeong, Jongryeol;Choi, Jongdae;Shin, Changwoo;Lee, Daeheung;Lim, Wonsik;Park, Yeong-Il;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.40-48
    • /
    • 2013
  • Recently, many types of electric vehicles including a heavy duty vehicle have been developed and released because of the better fuel economy and less gas products. In this study, research about an electric bus which utilizes the wheel motor drive system was conducted. The wheel motor is a motor connected to the wheel directly only with a simple gear so that the developer can utilize the space efficiently and the whole system efficiency will be better because of simple structure. However, because it is different from former types of vehicles which use the differential gear, the development of the integrated control logic is required in order to meet the vehicle stability and driving performance. The developed control logic is composed with direct yaw moment control, regenerative braking control and slip control logics. It is compared to the control logics which does not consist of direct yaw moment control and slip control when the vehicle is exposed in tough situations. For the unification of the control logic, a few maps were developed and applied to determine the output torque of each motor according to the driving status. As a result, it is shown that the developed control logic is more safe and well follow the target speed than the other control logic applied simulations.

The Improvement of low speed driving characteristics of induction motor by inertia moment identification. (관성 모멘트 동정에 의한 유도전동기의 저속운전 특성개선)

  • 이성근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.627-634
    • /
    • 1998
  • This paper proposes an algorithm which improves capacity of a state observer and low speed driving characteristics of a induction motor by inertia moment identification. In induction motet driving systems, it is difficult to obtain the accurate speed information by a low resolution encoder because the encoder pulses are very few in a low speed range. To improve this problem, state observer based on the Gopinath' theory which estimates speed and disturbance was designed, and disturbance rejection control was realized by application of the observer. Also, inertia moment of the motor was estimated and the nominal inertia of the observer was identified to minimize the error of estimated speed and disturbance. From the simulation and experimental results, it is showed that the proposed observer improved the transient response characteristics in low speed region below 6[rpm].

  • PDF