• Title/Summary/Keyword: Motor identification

Search Result 304, Processing Time 0.025 seconds

A Mechanical Sensorless Vector-Controlled Induction Motor System with Parameter Identification by the Aid of Image Processor

  • Tsuji Mineo;Chen Shuo;Motoo Tatsunori;Kawabe Yuki;Hamasaki Shin-ichi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.350-357
    • /
    • 2005
  • This paper presents a mechanical sensorless vector-controlled system with parameter identification by the aid of image processor. Based on the flux observer and the model reference adaptive system method, the proposed sensorless system includes rotor speed estimation and stator resistance identification using flux errors. Since the mathematical model of this system is constructed in a synchronously rotating reference frame, a linear model is easily derived for analyzing the system stability, including motor operating state and parameter variations. Because it is difficult to identify rotor resistance simultaneously while estimating rotor speed, a low-accuracy image processor is used to measure the mechanical axis position for calculating the rotor speed at a steady-state operation. The rotor resistance is identified by the error between the estimated speed using the estimated flux and the calculated speed using the image processor. Finally, the validity of this proposed system has been proven through experimentation.

Parameter Identification and Error Analysis of Approximation method for Linear motors (리니어 모터의 매개변수 추정과 근사화의 오차 분석)

  • Nam, Jae-Wu;Oh, Joon-Tae;Kim, Gyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.61-68
    • /
    • 2012
  • In this paper, a closed-loop sensorless stroke control system for a linear compressor has been designed. In order to estimate the piston position accurately, motor parameters are identified as a function of the piston position and the motor current. These parameters are stored in ROM table and used later for the accurate estimation of piston position. The identified motor parameters are approximated to the several surface functions in order to decrease memory size. They can also be divided into 2 or 4 subsections to decrease identification errors. The effect of the order of surface functions and division of subsections on identification errors and computation time is analyzed.

Parameter identification of DC Motor Using a RCGA and model adjustment technique (RCGA와 모델조정기법을 이용한 직류 전동기의 파라미터 동정)

  • So, Myung-Ok;Oh, Sea-June;Yoo, Hee-Han;Lee, Sang-Tae;Choi, Woo-Chel
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.262-267
    • /
    • 2005
  • PID controller is widely used in industries until now. The reason is that the structure is very simple, and that it is easily estimated in terms of hardware, and that it doesn't need a lot of parameters which should be tuned. Therefore, DC motor also uses PID controller. In this paper, a method is proposed to identify parameters of a DC motor system using a RCGA prior to design of PID controller. The model identified using a RCGA is verified through simulations.

  • PDF

Improvement of Speed Control Performance using Acceleration Feedforward and Incrtia Identification for the Induction Motor (관성능률 추정과 가속도 전향보상을 이용한 유도전동기의 속도제어 성능향상)

  • 이재옥;김상훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.90-97
    • /
    • 2001
  • In this paper, a novel speed control strategy using an acceleration feedforward compensation by the estimation of the system inertia is proposed. With the proposed method, the enhanced speed control performance can be achieved and the speed response against the disturbance torque can be improved for the vector-controled induction motor drive systems in which the bandwidth of the speed controller cannot be made large enough. The simulation and experimental results for induction motor drive systems confirm the validity of the proposed strategy.

  • PDF

A Study on the Implementation af a Digital Spaed Controlled BLDC Drive (BLDC 전동기의 디지털 속도제어기에 관한 연구)

  • Roh, Kwang-Ho;Kim, Yong;Lee, Eun-Young;Cho, Gyu-Man;Lee, Kyu-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.991-993
    • /
    • 2000
  • The paper presents the software control of a brush-less do motor with parameter identification. Not only speed and current controls but also a real-time identification of the motor parameters can be implemented by software using the digital signal processor TMS320F240. The DSP Controller TMS320F240 from Texas Instruments is suitable for a wide range of motor drives TMS320F240 provides a single chip solution by integrating on-chip not only a high computational power but also all the peripherals necessary for electric motor control. This new family of DSPs enables single chip, cost effective, modular and increased performance solutions for BLDC drives. The present paper describes how a speed controlled brushless DC drive can be implemented using TMS320F240 and what kind of results can be achieved.

  • PDF

Performance Improvement of Slotless SPMSM Position Sensorless Control in Very Low-Speed Region

  • Iwata, Takurou;Morimoto, Shigeo;Inoue, Yukinori;Sanada, Masayuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • This paper proposes a method for improving the performance of a position sensorless control system for a slotless surface permanent magnet synchronous motor (SPMSM) in a very low-speed region. In position sensorless control based on a motor model, accurate motor parameters are required because parameter errors would affect position estimation accuracy. Therefore, online parameter identification is applied in the proposed system. The error between the reference voltage and the voltage applied to the motor is also affect position estimation accuracy and stability, thus it is compensated to ensure accuracy and stability of the sensorless control system. In this study, two voltage error compensation methods are used, and the effects of the compensation methods are discussed. The performance of the proposed sensorless control method is evaluated by experimental results.

Fault Detection of BLDC Motor Based on Operating Characteristic (BLDC 전동기 운전 특성을 이용한 새로운 고장 검출 기법 구현)

  • Lee, Jung-Dae;Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.325-327
    • /
    • 2007
  • This paper proposes a novel sensorless fault detection algorithm for a brushless DC(BLDC) motor drive system. This proposed method is configured without the additional sensor for fault detection and identification. The fault detection and identification are achieved by a simple algorithm using the operating characteristic of the BLDC motor. This proposed method can also be embedded into existing BLDC motor drive systems as a subroutine without excessive computational effort. The feasibility of a novel sensorless fault detection algorithm is validated in simulation.

  • PDF

Design of a Fault Detector by using System Identification (시스템 식별 기법을 이용한 고장 탐지기 설계)

  • Park, Tae-Dong;Lee, Jea-Ho;Bai, Shan-Lin;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.199-200
    • /
    • 2008
  • Demand for reliability and safety in modem systems has been increased in the research on fault detection and isolation. At traditional approaches to fault detection, redundant sensors have been used. More advanced methods are the residual analysis of signals which are created by the comparison between the actual plant behavior and the output response of a mathematical model. However, mathematical system models are difficult to obtain by using physical laws. These problems can be solved by system identification. In this paper, the transfer function of a direct current motor is estimated by using the system identification. And, the efficiency of the fault detector design is verified by using experiments.

  • PDF

Inverse Problem Methodology for Parameter Identification of a Separately Excited DC Motor

  • Hadef, Mounir;Mekideche, Mohamed Rachid
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.365-369
    • /
    • 2009
  • Identification is considered to be among the main applications of inverse theory and its objective for a given physical system is to use data which is easily observable, to infer some of the geometric parameters which are not directly observable. In this paper, a parameter identification method using inverse problem methodology is proposed. The minimisation of the objective function with respect to the desired vector of design parameters is the most important procedure in solving the inverse problem. The conjugate gradient method is used to determine the unknown parameters, and Tikhonov's regularization method is then used to replace the original ill-posed problem with a well-posed problem. The simulation and experimental results are presented and compared.

Single Parameter Fault Identification Technique for DC Motor through Wavelet Analysis and Fuzzy Logic

  • Winston, D.Prince;Saravanan, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1049-1055
    • /
    • 2013
  • DC motors are widely used in industries like cement, paper manufacturing, etc., even today. Early fault identification in dc motors significantly improves its life time and reduces power consumption. Many conventional and soft computing techniques for fault identification in DC motors including a recent work using model based analysis with the help of fuzzy logic are available in literature. In this paper fuzzy logic and norm based wavelet analysis of startup transient current are proposed to identify and quantify the armature winding fault and bearing fault in DC motors, respectively. Results obtained by simulation using Matlab and Simulink are presented in this paper to validate the proposed work.