• Title/Summary/Keyword: Motor drive inverter

Search Result 538, Processing Time 0.025 seconds

Multi-level Inverter for the Excitation Control of an SRM (SRM의 여자제어를 위한 멀티레벨 인버터)

  • 이상훈;박성준;안진우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.161-169
    • /
    • 2003
  • The applications of SRM(Switched Reluctance motor) are dramatically increasing due to a simple mechanical structure, a high efficiency and a high speed drive characteristics. Energy recovery in the regenerative region is very important when SRM is used in traction drive. This is to reduce energy loss during mechanical braking and/or to have a high efficiency drive. To control excitation voltage during motoring and regenerating voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation. The proposed method is verified through simulations and experiments.

Multi-level Inverter for the Excitation Control of an SRM (SRM의 여자제어를 위한 멀티레벨 인버터)

  • 이상훈;박성준;안진우
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.161-161
    • /
    • 2003
  • The applications of SRM(Switched Reluctance motor) are dramatically increasing due to a simple mechanical structure, a high efficiency and a high speed drive characteristics. Energy recovery in the regenerative region is very important when SRM is used in traction drive. This is to reduce energy loss during mechanical braking and/or to have a high efficiency drive. To control excitation voltage during motoring and regenerating voltage in the generator operation in the SRM, multi-level voltage control is effective. This paper suggests multi-level inverter which is useful for motoring and regenerative operation. The proposed method is verified through simulations and experiments.

Carrier Based Common Mode Voltage Reduction Techniques in Neutral Point Clamped Inverter Based AC-DC-AC Drive System

  • Ojha, Amit;Chaturvedi, Pradyumn;Mittal, Arvind;Jain, Shailendra
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.142-152
    • /
    • 2016
  • Common mode voltage (CMV) generation is a major problem in switching power converter fed induction motor drive systems. CMV is the zero sequence voltage generated due to the switching action of power converters. Even a small magnitude of CMV with a high rate of change may circulate large bearing currents which may damage a machine's bearings and shorten its life. There are several methods of controlling CMV. This paper presents 3-level sinusoidal pulse width modulation based techniques to control the magnitude and rate of change of CMV in multilevel AC-DC-AC drive systems. Simulation and experimental investigations have been presented to validate the performance of proposed technique to control CMV in 3-level neutral point clamped inverter based AC-DC-AC system.

Improving on Performance of Induction Motor by 3 Phase Dual Inverter Drives (3상 Dual Inverter의 구동에 의한 유도전동기의 운전 특성 개선)

  • Hyun, Dong-Seok;Cho, Sun-Bong;Sim, Jun-Seok;Baik, Kwang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.273-277
    • /
    • 1989
  • This paper concerns to drive Induction Motor with open delta winding, and improve general performance, speed response, operation region and flexibility of control, etc. And a control algorithm, which reduces large zero-phase current at this operation, is presented.

  • PDF

DYNAMICAL PERFORMANCE OF A NEW TYPE OF THREE PHASE SYNCHRONOUS MOTOR DRIVE SUPPLTED BY SQUARE-WAVE INVERTERS

  • Soltani, Jafar
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.493-497
    • /
    • 1998
  • In this paper, a three phase voltage source inverter synchronous motor drive is introduced which is capable of producing an approximate to sine-wave currents in the stator windings. Compare to a conventional current forced synchronous machine drive, for the same machine loss, a gain in out put per unit overall volume of 125% at a 50Hz supply frequency has been achieved. In addition, the torque pulsation has been drastically reduced. These improvements are achieved by introducing new rotor windings which are capable of controlling the stator current waveforms an approximate to sine-wave. A computer program has been developed which can be used to predict the dynamic performance of this drive/system. The paper describes the design of rotor windings for cylindrical rotor motor but the theory is equally applicable to salient-pole designs.

  • PDF

Transformerless Cascaded AC-DC-AC Converter for Multiphase Propulsion Drive Application

  • Tao, Xing-Hua;Xu, Lie;Song, Yi-Chao;Sun, Min
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.354-359
    • /
    • 2012
  • A transformerless converter suitable for multiphase drive application is presented in this paper. The topology employs a cascaded H-bridge rectifier as the interface between the grid and multi inverters which drive the multiphase motor. Compared with the conventional structure, the new topology eliminates the input transformer and also has the advantages such as four quadrant operation, simple configuration, low cost, high efficiency, and so on. The control strategies for the grid-side cascade H-bridge rectifier and the motor-side inverter are studied accordingly. Based on the multi-rotational reference frame, modular control scheme is developed to regulate the multiphase drive system. Simulation results show the proper operation of the proposed topology and the corresponding control strategy.

A Study on The Material Selection and Characteristic Investigation of Rotor Bar and End Ring of Induction Motor for High Speed Train (고속전철용 견인전동기의 회전자 바와 엔드링의 재질선정 및 특성고찰에 관한 연구)

  • 이상우;김근웅;윤종학;이기호;한성수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.187-193
    • /
    • 1998
  • An inverter-driven induction motor is used as the traction motor for a high speed drive system that required safty, reliability and performance and so on. rotor bar and end ring of the traction motor are the electrical equipments which form the conductive close loop and then induce current by interaction wi th the current of stator. the materials selection of rotor bar and end ring are seriously considered in the aspects of electrical and mechanical specification and Motor slip relation to inverter. Particularly motor slip guarantee the safty and reliability of induction motor. this paper show the material selection and the determining of slip in the design of traction motor for high speed train by analyzing the specifications of material being used currently.

  • PDF

Resonant Step-Down DC/DC Converter to Reduce Voltage Stresses of Motor Driving Inverter under 3-phase AC Utility Line Condition (3상 전원 조건의 모터 구동 인버터 내압 저감을 위한 공진 강압형 DC/DC 컨버터)

  • Kang, Kyung-Soo;Kim, Sang-Eon;Lee, Joon-Hwan;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.391-398
    • /
    • 2014
  • This paper presents a resonant step-down DC/DC converter to reduce the voltage stresses of a 3-phase inverter module under the three-phase AC utility line condition. Under this condition, a conventional 3-phase inverter module suffers from high voltage stresses as a result of the high rectified DC link voltage; hence, a high-cost high-voltage-rating inverter module must be used. However, using the proposed converter, a low-cost low-voltage-rating inverter module may be adopted to drive the motor even under the 3-phase AC line condition. The proposed converter, which can be realized with small size inductor and low-voltage-rating semiconductor devices, operates at a high-efficiency mode because of the zero-current switching operations of all the semiconductor devices. The operational principles are explained and a design example is provided in the study. Experimental results demonstrate the validity of the proposed converter.

Permanent Magnet Synchronous Motor Drive Inverter System Simulation Using SVPWM (SVPWM을 이용한 PMSM 구동용 인버터 시뮬레이션)

  • Kim, Kyung-Min;Lee, Jung-Hyo;Hwang, Chun-Hwan;Lee, Won-Cheol;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.267-272
    • /
    • 2008
  • This paper is simulated overall composition of permanent magnet synchronous motor using Simulink in Matlab. In general permanent magnet synchronous motor drive system, SVPWM method is usually adopted. The simulation results in this paper show the speed and torque characteristics of PMSM with motor drive which is modulated by SVPWM. Through this simulation, it can be possible to verify the component which affects the torque and speed control causing the SVPWM.

  • PDF

ROBUST DESIGN OF A CSI-FED INDUCTION MOTOR DRIVE SYSTEM USING THE KALMAN FILTER (칼만 필터를 이용한 CSI-FED 유도 전동기 DRIVE SYSTEM의 강인성 설계)

  • Baek, Hyng-Lae;Lee, Gie-Yong;Baik, Kwang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.356-360
    • /
    • 1990
  • This paper is an application of Modern control Theory to the control of a current-source inverter (CSI) fed Induction Motor Drive System. A Linear Quadratic-Gaussian (LQG) scheme is developed, in which the Kalman Filter is tuned for high robustness by a method due to Doyle and Stein(8). The design is carried out for a sample system and the robustness by analysis and computer simulation.

  • PDF