• Title/Summary/Keyword: Motor drive

Search Result 2,623, Processing Time 0.037 seconds

Driving Performance of Switched Reluctance Motor Drive (Switched Reluctance Motor Drive 의 구동특성)

  • Oh, Suk-Gyu;An, Young-Joo;Choo, Young-Bae;Lee, Il-Chun;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.604-606
    • /
    • 1992
  • Many Industrial applications require high facultied and high efficiency motor drives. Recently, as such motor driving system, switched reluctance motor ( S R M ) drives are proposed. This paper describes the design features, drive circuits, and performance of 6/4 S R M for high efficiency variable speed drives. The main advantages of these motors lie In high efficiency, simple driving circuitry, and low manufacturing cost. The prototypes have been built and tested, showing satisfactory performance.

  • PDF

A ROBUST CONTROL OF PM SYNCHRONOUS MOTOR USING ACCELERATING TORQUE FEEDBACK

  • Kim, Hyun-Soo;Kim, Myung-Bok;Youn, Myung-Joong;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.470-475
    • /
    • 1998
  • A robust control technique is presented for a high performance control of a permanent-magnet(PM) synchronous motor. In order to deal with the internal and external disturbances of a PM synchronous motor drive system, a new feedback control structure is proposed. Since the dynamic behavior of the PM synchronous motor drive system is mainly concerned with the difference between the electro-magnetically developed torque and the load torque which generally referred to as an accelerating torque, the estimation and control techniques of this torque are introduced. The simulations and experiments are carried out for the DSP-based PM synchronous motor drive system and the results well demonstrate the effectiveness of the proposed control technique.

  • PDF

AN EFFICIENCY OPTIMIZED OPERATION OF INDUCTION MOTOR DRIVE SYSTEMS FOR ELECTRIC VEHICLES

  • Park, Uk-Don;Lee, Jae-Moon;Kim, Dong-Hee;Lee, Dal-Hae
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.938-943
    • /
    • 1998
  • The induction motor of the electric vehicles is controlled based on the vector control method to obtain good torque control characteristics. In the conventional vector control system, the field exciting current should be kept on a constant value to keep a stable flux level. This method has a liability that core loss becomes increasing at the light load region. To solve this liability, the efficiency maximizing control method of the vector controlled induction motor is proposed in thid paper. We developed light weight water cooled 60kW induction motor drive system which adopts our method and fabricated a conversion electric car for actual vehicle test. We demonstrate the usefulness of drive system by comparing its driving mode with conventional field oriented system and an efficiency maximizing controlled induction motor.

  • PDF

Feasibility Study on the New Structure of a Spindle Motor for Hard Disk Drive

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This paper presents the new structure of a spindle motor for hard disk drive (HDD). It can produce axial force as well as torque without a pulling plate or a pulling magnet required for the normal operation of a hydrodynamic bearing in rotating-shaft structure. The proposed models have different air gap length along the axial direction by changing the thickness of permanent magnet (PM). One has a single slope and the other has double slopes on the surface of PM. For the design of the proposed models, variables are defined and its effects on the motor performances are investigated by 3-demensional finite element analysis (FEA). The equi-performance curves are investigated for the main characteristics of the spindle motor such as generated torque, axial force and torque ripple ratio. The validity of the proposed models is verified by the feasibility study and performance evaluation.

Microprocessor-Based Vector Control System for Induction Motor Servo- Drive (유도전동기 서보운전을 위한 마이크로프로세서-벡터 제어 시스템)

  • 김광헌;김영렬;원충연;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1218-1229
    • /
    • 1991
  • The time optimal position control design can be repeatedly taken from the initial state of a dynamic system to a desired one as fast as possible in the industrial drives. In this case, an induction machine parameters will vary due to temperature, frequency, and saturation effects. In particular, the rotor resistance changes critically with temperature and frequency. These changes affect the command values of the stator current components and slip speed. There is a mismatch between the commanded variables and actual ones of the induction motor drive, and this situation leads to coupling of the vector controller from the plant, i.e. the induction motor . Consequences of such a coupling include the initiation of oscillations of the rotor flux and unsuitable switching of electromagnetic torque for the induction motor servo drive. Therefore, this paper describes a rotor resistance parameter compensating method for the induction motor, And the validity of the proposed design method is confirmed by simulation studies and experiment results.

  • PDF

The Efficiency Optimization Control of an Indirect Vector-Controlled Induction Motor Drive (간접벡터제어 유도전동기의 효율 최적화 운전)

  • Choi, Jin-Ho;Shin, Jae-Hae;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.352-354
    • /
    • 2000
  • The induction motor is a high-efficiency machine when working close to its rated operation point. This paper uses a simple induction motor model that includes iron losses. The model, which only requires the knowledge of conventional induction motor parameters, is referred to a field-oriented frame. At steady-state light-load condition the minimum point of the input power can be found with the condition that it is possible to obtain the same torque with different combinations of flux and current values. Using the minimum point. the drive system with the proposed efficiency optimization controller can be controlled easily. Simulation and experimental results show the effectiveness of the control strategy proposed for an induction motor drive.

  • PDF

A Study on Speed control Sensorless BLDC using AVR (AVR을 이용한 Sensorless BLDC의 속도제어에 관한 연구)

  • Won, Jin-Kuk;Mon, Ji-Woo;Kim, Byong-Kuk;Son, Dong-Hyuk;Lee, Byung-Jun;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1144-1145
    • /
    • 2007
  • This paper is investigated the sensorless drive for BLDC motor using microprocessor. Since the BLDC motor should be commutated according to a rotor position, the sensors are required to detect the position. But the sensors increase cost and volume, complicate the motor configuration, and do not operate properly in some operating environments such as high temperature conditions, so that the necessity of sensorless commutation algorithm is getting increased. This paper is proposed the method to drive BLDC motor without position-detecting sensor using Back EMF. Back EMF commutation method was implemented the sensorless drive system which could control the rotational speed and monitor the behavior of a motor.

  • PDF

Drive Characteristic of a Sensorless BLDC Motor (센서리스 BLDC 전동기의 구동 특성)

  • Kim, Tae-Hyun;Kim, Byong-Kuk;Hwang, Dong-Won;Lee, In-Jae;Jo, Won-Young;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.192-194
    • /
    • 2005
  • This paper is investigated the drive for sensorless BLDC motor using back EMF with ATMEGA-128. Since the BLDC motor should be commutated according to a rotor position. But the sensors increase cost and volume, complicate the motor configuration, and do not operate properly in some operating environments such as high temperature conditions, so that the necessity of sensorless commutation algorithm is getting increased. This paper is proposed the methode to drive BLDC motor without position sensor using Back EMF.

  • PDF

Development of electric Four Wheel Drive System (e-4WD 시스템 개발)

  • Jo, Hee Young
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • e-4WD(Electric-4WD) system is a 4WD(4-Wheel Drive) System that can transform a car into a Hybrid System. e-4WD consists of a Motor, Inverter, Speed reducer and Clutch. The Motor, Speed reducer and Clutch are installed on the rear sub-frame as a chassis module type. The inverter is installed separately. Compared to a mechanical 4WD, the e-4WD system has many advantages. For example, the reduced number of drivetrain components makes better use of the space. Driving with a motor only at low speed improves fuel economy and reduces exhaust gas. Engine downsizing is available because the motor assists the engine. The performance of a conventional HEV(Hybrid Electric Vehicle) system can also be maintained. This paper proposes the specifications of components and the control logic for an e-4WD System. And the effect of the e-4WD system is proven using a test vehicle equipped with components under various test conditions.

Performance Evaluation of the Field-Oriented Control of Star-Connected 3-Phase Induction Motor Drives under Stator Winding Open-Circuit Faults

  • Jannati, Mohammad;Idris, Nik Rumzi Nik;Aziz, Mohd Junaidi Abdul
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.982-993
    • /
    • 2016
  • A method for the fault-tolerant vector control of star-connected 3-phase Induction Motor (IM) drive systems based on Field-Oriented Control (FOC) is proposed in this paper. This method enables the control of a 3-phase IM in the presence of an open-phase failure in one of its phases without the need for control structure changes to the conventional FOC algorithm. The proposed drive system significantly reduces the speed and torque pulsations caused by an open-phase fault in the stator windings. The performance of the proposed method was verified using MATLAB (M-File) simulation as well experimental tests on a 1.5kW 3-phase IM drive system. This paper experimentally compares the operation of the proposed fault-tolerant vector controller and a conventional vector controller during open-phase fault.