• Title/Summary/Keyword: Motor core

Search Result 527, Processing Time 0.025 seconds

Analysis on the Core Loss and Windage Loss in Permanent Magnet Synchronous Motor for High-Speed Application (고속으로 운전되는 영구자석형 동기전동기의 철손 및 풍손 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Cho, Han-Wook
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.511-520
    • /
    • 2006
  • Recently, more attention has been paid to the development of high-speed permanent magnet (PM) synchronous motors, since they are conductive to high efficiency, high power density, small size, and low weight. In high-speed PM machines, core loss and windage loss form a larger proportion of the total losses than usual in conventional mid- or low speed machines. This article deals with the analysis on the core loss and windage loss in PM synchronous motor for high-speed application. Using the data information from a manufacturer and non-linear curve fitting, this paper investigates the magnetic behavior and its core losses in the stator core using the electrical steels. And, the windage loss is calculated according to the variation of the rotational speed, motor inner pressure and temperature.

A structural study on mold EMBO equipment to minimize the influence on the bottom dead center displacement of precision high-speed press (정밀고속 PRESS 하사점 변위량에 영향을 최소화 하는 금형 EMBO 장치에 관한 구조 연구)

  • Kim, Seung-Soo
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.46-50
    • /
    • 2016
  • Laminate products for motor core are developed with a structure in which the importance of quality level and clamping force is influenced by the recent performance and safety of the product. It has been confirmed that the accuracy of the mold is emphasized, and that the accuracy of the tightening force produced by the stacked product for the motor core is greatly influenced by the change in the bottom dead center displacement of the aged high speed press. The reason why setting the mold, and test the effect of bottom dead center of high speed press is to improve product pull force in embossing process at mold. We have applied the system to minimize the effect on the damping displacement under the dynamical degree of the equipment by applying the emboss complement device which can test the influence and complement in the process.

Comparative Study of Stator Core Composition in Transverse Flux Rotary Machine

  • Lee, Ji-Young;Moon, Seung-Ryul;Koo, Dae-Hyun;Kang, Do-Hyun;Lee, Geun-Ho;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.350-355
    • /
    • 2011
  • This paper deals with the comparison of magnetic characteristics in transverse flux rotary machine according to different stator core composition with the same rotor. Three different stator designs are considered in the analysis according to the material composition of inner and outer stator cores. Electromotive force (EMF), inductance, torque, and core losses are calculated by threedimensional finite element analysis. Calculated and measured results of back-EMF according to the analysis models in dependency on speed are presented.

Nano-scale Inter-lamellar Structure of Metal Powder Composites for High Performance Power Inductor and Motor Applications

  • Kim, Hakkwan;An, Sung Yong
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.138-147
    • /
    • 2015
  • The unique nano-scale inter-lamellar microstructure and unparalleled heat treatment process give our developed metal powder composite its outstanding magnetic property for power inductor & motor applications. Compared to the conventional polycrystalline Fe or amorphous Fe-Cr-Si-B alloys, our unique designed inter-lamellar microstructure strongly decreases the intra-particle eddy current loss at high frequencies by blocking the mutual eddy currents. The combination of optimum permeability, magnetic flux and extremely low core loss makes this powder composite suitable for high frequency applications well above 10 MHz. Moreover, it can be also possible to SMC core for high speed motor applications in order to increase the motor efficiency by decreasing the core loss.

A Study of the Iron-Core Solenoid Analysis for 3 D.O.F. Motor Control with Experimental Method (3자유도 모터 제어를 위한 철심 솔레노이드 특성의 실험적 해석에 관한 연구)

  • Baek, Yoon-Su;Park, Joon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1334-1340
    • /
    • 2001
  • In this paper, the experimental modeling of the force between permanent magnet and iron-core solenoid is suggested for more accurate control of 3 D.O.F. motor using the electromagnetic force. In the case of iron-core solenoid, the general equation of solenoid cant be used simply because of its nonlinearity. Therefore, the magnetic flux density is estimated through the concept of equivalent permanent magnet. The force distribution between permanent magnet and iron-core solenoid is more dependent on the magnetization of iron core caused by the permanent magnet than any other parameters. Therefore, the equation of the force estimation between these magnetic systems can be modeled by the experimental function of the magnetization of iron core. Especially, if the distance between iron-core solenoid and permanent magnet is far enough, the force equation through experiment can be expressed from only the current of coil and the distance between iron-core solenoid and permanent magnet. It means that Coulombs law can be used for magnetic systems and it is validated through the experiment. Therefore, force calibration is performed by the concept of Coulombs law.

Development of Iron Core type Linear Motor for Machine Tool(2) (공작기계용 철심형 리니어모터 기술개발(2))

  • 정재한;박재완;박재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.82-85
    • /
    • 2002
  • Due to various advantages over the conventional linear motion device such as ball-screw, linear motors have been used in wide variety of industrial applications for years. Driven by increased demand for precision machine tools, the importance of high positioning accuracy, high stiffness and high thrust are greatly increasing. In this paper, thrust ripple, detent force and thermal behavior are considered for the development of high performance linear motor whose thrust is up to 4, 000N. This paper presents a comprehensive study for an iron core type linear motor characteristics that include the influence of PM position on thrust thrust ripple by detent farce and motor dynamics as well.

  • PDF

Implementation of Ethernet-Based High-Speed Data Communication for Multi-core DSP (멀티 코어 DSP를 위한 이더넷 기반 고속 데이터 통신 구현)

  • Nguyen, Dung Huy;Choi, Joon-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.185-190
    • /
    • 2022
  • We propose a high speed data communication method for motor drive systems with fast control cycle in order to collect state variables of motor control without degrading control performance. Ethernet is chosen for communication device, and multi-core DSP architecture is exploited for communication processing load distribution. The communication program including network protocol stack and motor control program are assigned to two separate cores, and data between two cores are exchanged using interrupt-based inter-process communication mechanism, which enables to achieve a high-speed communication performance without degrading the motor control performance. The performance of developed communication method is demonstrated by real experiments using TCP, UDP and Raw Socket protocols in an experimental setup consisting of TI's TMS320F28388D motor control card and MS Windows PC.

Analytical Study Considering Both Core Loss Resistance and Magnetic Cross Saturation of Interior Permanent Magnet Synchronous Motors

  • Kim, Young-Kyoun
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.280-284
    • /
    • 2012
  • This paper presents a method for evaluating interior permanent magnet synchronous motor (IPMSM) performance over the entire operation region. Using a d-q axis equivalent circuit model consisting of motor parameters such as the permanent magnetic flux, copper resistance, core loss resistance, and d-q axis inductance, a conventional mathematical model of an IPMSM has been developed. It is well understood that in IPMSMs, magnetic operating conditions cause cross saturation and that the iron loss resistance - upon which core losses depend - changes according to the motor speed; for the sake of convenience, however, d-q axis machine models usually neglect the influence of magnetic cross saturation and assume that the iron loss resistance is constant. This paper proposes an analysis method based on considering a magnetic cross saturation and estimating a core loss resistance that changes with the operating conditions and speed. The proposed method is then verified by means of a comparison between the computed and the experimental results.

Prediction of Core Loss Including Higher Harmonic Inductions Using Two Symmetrical AC Minor Loops

  • Son, Derac
    • Journal of Magnetics
    • /
    • v.8 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • For the induction motor and inverter type motor design, prediction and analysis of core loss including higher harmonics have been studied. In this work, we have generated two symmetrical ac minor loop in the fundamental hysteresis loop whose positions are zero induction region and saturation induction region, and we could pre-dict core loss including higher harmonics inductions. using the following modified superposition principle; $P_c(B_0,f_0,B_h,nf_0)=P_c(B_0,f_0)+(n-1)[K_1(B_0)P_{cL}(B_h,nf_0)+(1-k_1(B_0))P_{cH}(B_h,nf_0)].$Using this equation we could also analyze core losses including higher harmonic induction under different maximum magnetic induction, different amplitude of higher harmonic induction with different harmonic frequencies.

A Study on Cogging Characteristic by Core Design Type of BLDC Motor for a Vehicle ETC (자동차 ETC용 BLDC motor의 Core 형상에 따른 Cogging 특성에 관한 연구)

  • Park, Il-Hwan;Kim, Dong-Sok;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.678_679
    • /
    • 2009
  • 본 연구에서는 ETC용 소형 BLDC 모터에서 소음, 진동의 원인인 Cogging 현상을 줄이기 위한 목적으로 Core 형상에 따른 Cogging 현상에 대한 연구를 진행하였으며, 이 중, 고정자 Core에 Arc-type 의 sub slot을 적용하여 정격 토크 대비 22.23%에서 4.71%로 코깅 토크를 낮추었다.

  • PDF