• Title/Summary/Keyword: Motor control

Search Result 7,237, Processing Time 0.049 seconds

The position control of an AC servo motor using linear hall-effect sensors (리니어 홀-이펙트 센서를 이용한 교류 서보 모터의 위치제어)

  • 박희성;장성수;오성업;성세진
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.315-317
    • /
    • 2003
  • This paper deals with the position control of an AC servo motor using linear hall-effect sensors. The price of these is very low, but it is possible to make position control of motor similar to a control using an encoder. This paper introduces the design of motor using linear hall-effect sensors and shows the results of control.

  • PDF

Sensorless Speed Control of Permanent Magnet AC Motor using Fuzzy Logic Controller (퍼지 제어기를 이용한 영구 자석 교류 전동기의 센서리스 속도 제어)

  • Choi, Sung-Dae;Ko, Bong-Woon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.524-527
    • /
    • 2003
  • This paper proposes speed control system using a Fuzzy Logic Controller(FLC) in order to realize the speed control of Permanent Magnet AC Motor with no sensor. FLC based MRAS(Model Reference Adaptive System) estimates the speed of Permanent Magnet AC Motor. Using the estimated speed, speed control is performed. The experiment is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF

Robust speed control of DC motor using Expert Hybrid controller (전문가 제어기를 이용한 직류 전동기의 강인 제어)

  • Cho, Hyeon-Seob;Oh, Hun;Jeon, Jeong-Chay;Ryu, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2799-2801
    • /
    • 2000
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. In this paper, PID-Expert hybrid control method for motor control system as a compensation method solving this problem is presented. If PID control system is stable, the Expert controller is idle. if the error hits the boundary of the constraint. the Expert controller begins operation to force the error back to the constraint set. The disturbance effect decrease remarkably, robust speed control of DC motor using PID-Expert Hybrid controller is demonstrated by the simulation.

  • PDF

Implementation of binary position controller with continuous inertial external loop for BLDC motor (브러시 없는 직류전동기를 위한 연속관성형 외부루프를 갖는 바이너리제어기의 구현)

  • 김영조;김영석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.60-66
    • /
    • 1996
  • Brushless DC(BLDC) motor have been increasingly used in machine tools and robotics applications due to the reliability and the efficiency. In control of BLDC motor, it is important to construct the controller which is robust to parameter variations and external disturbances. Variable structure controller(VSC) has been known as a powerful tool in robust control of time varying systems. In practical systems, however, VSC has a high frequency chattering which deteriorates system performances. In this paper, a binary controller(BC) which takes the form of VSC and MRAC combined is presented to solve this problem. BC consists of the primary loop controller and the external loop controller to change the gain of primary loop controller smoothly. So it can generate the continuous control input and is insensitive to parameter variations in the given domain. To confirm the validity, various investigations of control characteristics for various design parameters in a position control system of BLDC motor are carried out. (author). 11 refs., 18 figs., 1 tab.

  • PDF

Vector Control for the Rotor Resistance Compensation of Induction Motor (유도전동기 회전자 저항 보상을 위한 벡터제어)

  • 박현철;이수원;김영민;황종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

Implementation of Multi-Motor Controller Based on a Single Microcontroller (단일 마이크로컨트롤러 기반 다중 모터제어기 구현)

  • Kwon, Jae-Min;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.237-243
    • /
    • 2015
  • In this paper, we consider a cascaded type of control architecture for a multi motor-based feedback control system and propose an ADC (Analog to Digital Converter) resource allocation method to efficiently utilize the limited ADC resources. The purpose of the resource allocation method is to minimize both the motor position measurement error and the d-q current measurement error. The cascaded type of control architecture is applied in parallel to each motor to independently control the speed of a motor in the multi motor control system. All the control algorithms are implemented by software using a single microcontroller without using additional microcontrollers. It is illustrated by experiments that the speed and the torque of each motor are controlled precisely by the proposed control architecture with the efficient ADC allocation method.

Design of Speed Controller of an Induction Motor Based on Fuzzy-Neural Network (퍼지-신경회로망에 근거한 유도전동기 속도 제어기 설계)

  • Choi, Sung-Dae;Ban, Gi-Jong;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.282-284
    • /
    • 2006
  • Generally PI controller is used to control the speed of an induction motor. It has the good performance of speed control in case of adjusting the control parameters. But it occurred the problem to change the control parameters in the change of operation condition. In order to solve this problem, Fuzzy control or Artificial neural network is introduced in the speed control of an induction motor. However, Fuzzy control have the problems as the difficulties to change the membership function and fuzzy rule and the remaining error. Also Neural network has the problem as the difficulties to analyze the behavior of inner part. Therefore, the study on the combination of two controller is proceeded. In this paper, Speed controller of an induction motor based fuzzy-neural network is proposed and the speed control of an induction motor is performed using the proposed controller. Through the experiment, the fast response and good stability of the proposed speed controller is proved.

  • PDF

Development of DC MOTOR Remote Control System using Ethernet (Ethernet을 이용한 DC MOTOR 윈격 제어시스템 개발)

  • Lee, Jea-Ho;Kim, Yi-Cheal;Jung, Joon-Houng;Park, Ki-Heun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.437-440
    • /
    • 2003
  • Recently, the study on the design of NCS(Network Control System) using Ethernet is being rapidly progressed. NCS can be extensively applied in manufacturing automation, office automation, home automation, remote control and ect. A merit of NCS on based Ethernet is to make good use of advanced Internet environment and to apply a application of abundant TCP/IP upper layer to NCS. The purpose of this paper is to control a speed of DC-motor using NCS on based Ethernet. The control system is divided into a server part and a client part. A server transfers a value of reference speed of a DC-motor. A client receives a output signal of DC-motor and a reference input obtained from the server. A client computes a error of two signals and then makes a control input. The control input is transferred to a actuator In this pater, A controller uses a classical control using a general feedback. In this paper, a viewpoint is to compare performance of NCS with performance of a classical control and to analyze the cause of that.

  • PDF

Sensorless Vector Control of a Wound Induction Motor Using MRAS with On-Line Stator Resistance Tuning

  • Lee Jae-Hak;Kim Yoon-Ho;Lee Houng-Gyun;Woo Hyuk-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.462-465
    • /
    • 2001
  • The wound induction motor can provide high starting torque and reduced starting current simultaneously by inserting large scale resistor. And this technique is one of the well known methods among the induction motor starting methods and generally used for heavy load starting such as Crain and Cement factories. The conventional PI controller has been widely used in industrial application due to the simple control algorithm and in general, PI controller is used for control of current, torque, position, and speed for the wound induction motor drive system. However, the system may result in poor performance since sensors have to be used, which in turn is limited by the environmental condition. Recently, to overcome these problems, many sensorless vector control methods for the wound induction motor have been studied. This paper presents MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor drive. In conventional MRAS method, in low frequency, stator resistance variation can result in poor performance. Therefore, to overcome several shortages of the conventional MRAS caused by parameter variation and enhance robustness of the sensor less vector control, this paper investigates a MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor. The validity and effectiveness of the proposed method is verified through digital simulation.

  • PDF

Comparison of Cognitive Task-Directed Motor Control Ability in Younger and Older Subjects (인지적 요소가 포함된 과제 수행 시 젊은 성인과 노인의 동작 조절 비교)

  • Lee, Soo-A;Choi, Jong-Duk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.1
    • /
    • pp.51-59
    • /
    • 2017
  • PURPOSE: This study compared cognitive task-directed functional motor control ability for reaching and kicking movements in younger and older adults. METHODS: Subjects were divided into two groups of younger and older adults, with 13 subjects in each group. Subjects were required to perform a dual task combining a functional movement and cognitive component. The task consisted of reaching and kicking movements. Participants performed indicated movements when a target appeared on a monitor. The target randomly appeared on the monitor every 10 seconds. The total performance time (TPT), joint angular velocity (JAV), and muscle activation time were used to evaluate motor control ability. RESULTS: There were significant differences in all evaluation factors in a comparison of younger and older adults (p<.05). TPT was significantly shorter in older adults, and JAV and muscle activation time were significantly slower than that in the younger adult group. Although the results for older adults were within the normal range for functional assessment, their motor control abilities were significantly worse for cognitive tasks compared with those of younger adults. CONCLUSION: The results of this study indicated that a motor control assessment tool using a cognitive task would be helpful in assessment of motor control ability in healthy older adults.