• Title/Summary/Keyword: Motor Parameter

Search Result 1,017, Processing Time 0.025 seconds

The Performance Analysis of the Parameter Extracting Technique for the Vibration Monitoring System in High Voltage Motor (고압전동기용 진동 감시 시스템의 계수 추출기법 성능 분석)

  • Park, Jung-Cheul;Lee, Dal-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.529-536
    • /
    • 2019
  • In this paper, the signals of the sensor for extracting characteristic parameters of the rotor are collected and the performance of the extraction technique is analyzed. To this end, a vibration test league was developed for conducting model tests to analyze the signal characteristics under normal operation. As a result, it is judged that no change in the measured the raw data amplitude will occur in the acceleration sensor with the unbalanced mass measured from the acceleration sensor. Performing FFT showed a significant increase in amplitude of the rotational frequency of 20 Hz as the unbalanced mass increased. The analysis results according to the change in the unequal mass of the speed sensor also showed a significant increase in the 1X Harmonics component, such as the acceleration sensor. There was no change in the amplitude of the acceleration sensor data when the misalignment occurred, and for the Envelope data, the amplitude of 2X (40 Hz) was increased depending on the degree of misalignment. The velocity sensor at change of misalignment also showed similar results to the acceleration sensor, and the peak was reduced at 600 Hz as the load increased in the frequency spectrum.

A Study on Iris Image Restoration Based on Focus Value of Iris Image (홍채 영상 초점 값에 기반한 홍채 영상 복원 연구)

  • Kang Byung-Jun;Park Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.30-39
    • /
    • 2006
  • Iris recognition is that identifies a user based on the unique iris texture patterns which has the functionalities of dilating or contracting pupil region. Iris recognition systems extract the iris pattern in iris image captured by iris recognition camera. Therefore performance of iris recognition is affected by the quality of iris image which includes iris pattern. If iris image is blurred, iris pattern is transformed. It causes FRR(False Rejection Error) to be increased. Optical defocusing is the main factor to make blurred iris images. In conventional iris recognition camera, they use two kinds of focusing methods such as lilted and auto-focusing method. In case of fixed focusing method, the users should repeatedly align their eyes in DOF(Depth of Field), while the iris recognition system acquires good focused is image. Therefore it can give much inconvenience to the users. In case of auto-focusing method, the iris recognition camera moves focus lens with auto-focusing algorithm for capturing the best focused image. However, that needs additional H/W equipment such as distance measuring sensor between users and camera lens, and motor to move focus lens. Therefore the size and cost of iris recognition camera are increased and this kind of camera cannot be used for small sized mobile device. To overcome those problems, we propose method to increase DOF by iris image restoration algorithm based on focus value of iris image. When we tested our proposed algorithm with BM-ET100 made by Panasonic, we could increase operation range from 48-53cm to 46-56cm.

Design of Partial Discharge Pattern Classifier of Softmax Neural Networks Based on K-means Clustering : Comparative Studies and Analysis of Classifier Architecture (K-means 클러스터링 기반 소프트맥스 신경회로망 부분방전 패턴분류의 설계 : 분류기 구조의 비교연구 및 해석)

  • Jeong, Byeong-Jin;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.114-123
    • /
    • 2018
  • This paper concerns a design and learning method of softmax function neural networks based on K-means clustering. The partial discharge data Information is preliminarily processed through simulation using an Epoxy Mica Coupling sensor and an internal Phase Resolved Partial Discharge Analysis algorithm. The obtained information is processed according to the characteristics of the pattern using a Motor Insulation Monitoring System program. At this time, the processed data are total 4 types that void discharge, corona discharge, surface discharge and slot discharge. The partial discharge data with high dimensional input variables are secondarily processed by principal component analysis method and reduced with keeping the characteristics of pattern as low dimensional input variables. And therefore, the pattern classifier processing speed exhibits improved effects. In addition, in the process of extracting the partial discharge data through the MIMS program, the magnitude of amplitude is divided into the maximum value and the average value, and two pattern characteristics are set and compared and analyzed. In the first half of the proposed partial discharge pattern classifier, the input and hidden layers are classified by using the K-means clustering method and the output of the hidden layer is obtained. In the latter part, the cross entropy error function is used for parameter learning between the hidden layer and the output layer. The final output layer is output as a normalized probability value between 0 and 1 using the softmax function. The advantage of using the softmax function is that it allows access and application of multiple class problems and stochastic interpretation. First of all, there is an advantage that one output value affects the remaining output value and its accompanying learning is accelerated. Also, to solve the overfitting problem, L2-normalization is applied. To prove the superiority of the proposed pattern classifier, we compare and analyze the classification rate with conventional radial basis function neural networks.

Design of Gun Launched Ramjet Propelled Artillery Shell with Inviscid Flow Assumption (비점성 유동을 가정한 포 발사 램제트 추진탄 설계)

  • Kang, Shinjae;Park, Chul;Jung, Woosuk;Kwon, Taesoo;Park, Juhyeon;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2015
  • Operation area of corps was expanded under military reformation, and extending range of 155 mm howitzer became important issue. New approach is needed to extend range to 80 kim. Ramjet engine is air breathing engine, and it can provide specific impulse several times more than solid rocket motor so that range is extended using same weight of propellant. If the ramjet engine is gun-launched system, it does not require any other booster because muzzle velocity is near Mach 3. Especially solid fuel ramjet (SFRJ) does not have any moving part so that it is favorable for gun-launching system which is under high stress during launching. In this paper, we design air intake, combustion chamber, and nozzle of 155 mm gun launched ramjet propelled artillery shell with inviscid flow assumption. We conduct parameter study to have range more than 80 km, and maximum high explosive volume.

A Study on the Vibration Characteristics of Attitude Maneuvering of Satellite (위성의 자세기동에 따른 진동특성에 관한 연구)

  • Pyeon, Bong-Do;Bae, Jae-Sung;Kim, Jong-Hyuk;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.23-31
    • /
    • 2019
  • The design requirements of modern satellites vary depending on the purpose of operation. Like conventional medium and large-scale satellites, small satellites which operate on low orbit may also serve military purposes. As a result, there is increased demand for high-resolution photos and videos and multi-target observation becomes important. The most important design parameter for multi-target observation is the satellites' maneuverability. For increased maneuverability, the miniaturization is required to increase the stiffness of the satellite as this decreases the mass moment of inertia of the satellite. In the case of a solar panel having relatively low stiffness compared to the satellites' body, vibrations are generated when the attitude maneuver is performed, which greatly influences the image acquisition. For verification of such vibrational characteristics, the satellites is modeled as a reduced model, and experimental zig for simulating attitude maneuver is introduced. A rigidity simulator for simulating the stiffness of the satellite is also proposed. Additionally, the objective of the experimental method is to simulate the maneuvering angle of the satellite based on the winding length of the wire using a step motor, and to experimentally verify the vibration characteristics of the satellite body and the solar panel generated during the maneuvering test.

Design of Processor Lever Controller for Electric Propulsion System of Naval Ship (전기추진 함정용 프로세서 레버 제어기 설계)

  • Shim, Jaesoon;Lee, Hunseok;Jung, Sung-Young;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.134-145
    • /
    • 2021
  • It is common to optimize the propulsion control system through a so-called tuning process that modifies the parameter values of the propulsion control software during a ship commissioning. However, during this process, if the error of the initial setting value is large, the tuning time may take too long, or the propulsion equipment can be seriously damaged. Therefore, we conducted research on the design of a propulsion controller that applied a Processor lever controller even for inexperienced people with relatively little experience in tuning propulsion control software to be able to reduce the tuning time while protecting the propulsion system. Through simulation, by comparing the execution result of propulsion control lever commands through the PI controller without applying the Processor lever controller. We analyzed the improvement of the Overshoot and propulsion performance. The simulation results showed that the safety of the propulsion system increased because Overshoot of approximately 9.74%, which occurred when the Processor lever function was not applied.

Pipetting Stability and Improvement Test of the Robotic Liquid Handling System Depending on Types of Liquid (용액에 따른 자동분주기의 분주능력 평가와 분주력 향상 실험)

  • Back, Hyangmi;Kim, Youngsan;Yun, Sunhee;Heo, Uisung;Kim, Hosin;Ryu, Hyeonggi;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.62-68
    • /
    • 2016
  • Purpose In a cyclosporine experiment using a robotic liquid handing system has found a deviation of its standard curve and low reproducibility of patients's results. The difference of the test is that methanol is mixed with samples and the extractions are used for the test. Therefore, we assumed that the abnormal test results came from using methanol and conducted this test. In a manual of a robotic liquid handling system mentions that we can choose several setting parameters depending on the viscosity of the liquids being used, the size of the sampling tips and the motor speeds that you elect to use but there's no exact order. This study was undertaken to confirm pipetting ability depending on types of liquids and investigate proper setting parameters for the optimum dispensing ability. Materials and Methods 4types of liquids(water, serum, methanol, PEG 6000(25%)) and $TSH^{125}I$ tracer(515 kBq) are used to confirm pipetting ability. 29 specimens for Cyclosporine test are used to compare results. Prepare 8 plastic tubes for each of the liquids and with multi pipette $400{\mu}l$ of each liquid is dispensed to 8 tubes and $100{\mu}l$ of $TSH^{125}I$ tracer are dispensed to all of the tubes. From the prepared samples, $100{\mu}l$ of liquids are dispensed using a robotic liquid handing system, counted and calculated its CV(%) depending on types of liquids. And then by adjusting several setting parameters(air gap, dispense time, delay time) the change of the CV(%)are calcutated and finds optimum setting parameters. 29 specimens are tested with 3 methods. The first(A) is manual method and the second(B) is used robotic liquid handling system with existing parameters. The third(C) is used robotic liquid handling system with adjusted parameters. Pipetting ability depending on types of liquids is assessed with CV(%). On the basis of (A), patients's test results are compared (A)and(B), (A)and(C) and they are assessed with %RE(%Relative error) and %Diff(%Difference). Results The CV(%) of the CPM depending on liquid types were water 0.88, serum 0.95, methanol 10.22 and PEG 0.68. As expected dispensing of methanol using a liquid handling system was the problem and others were good. The methanol's dispensing were conducted by adjusting several setting parameters. When transport air gap 0 was adjusted to 2 and 5, CV(%) were 20.16, 12.54 and when system air gap 0 was adjusted to 2 and 5, CV(%) were 8.94, 1.36. When adjusted to system air gap 2, transport air gap 2 was 12.96 and adjusted to system air gap 5, Transport air gap 5 was 1.33. When dispense speed was adjusted 300 to 100, CV(%) was 13.32 and when dispense delay was adjusted 200 to 100 was 13.55. When compared (B) to (A), the result increased 99.44% and %RE was 93.59%. When compared (C-system air gap was adjusted 0 to 5) to (A), the result increased 6.75% and %RE was 5.10%. Conclusion Adjusting speed and delay time of aspiration and dispense was meaningless but changing system air gap was effective. By adjusting several parameters proper value was found and it affected the practical result of the experiment. To optimize the system active efforts are needed through the test and in case of dispensing new types of liquids proper test is required to check the liquid is suitable for using the equipment.

  • PDF