• Title/Summary/Keyword: Motor Fan

Search Result 252, Processing Time 0.032 seconds

Developed a BLDC Motor for Driving a Commercial Vehicle Fan (상용차 팬 구동용 BLDC 모터 개발)

  • Shin, Dong-Hwa;Lee, Byung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.533-540
    • /
    • 2022
  • This paper is the research result of designing and developing a BLDC motor for driving a condenser fan, which is widely used in air conditioners of commercial vehicles and specially equipped vehicles, and produced with a target value. The design of the motor was carried out in the order of designing the electric and magnetic circuits after determining the motor specifications. The process was repeated with different set values until the designed target condition was satisfied, and the electric and magnetic field distributions were made to be equal by reflecting the characteristics of the material. As a structural feature of the motor, it is a rotating field type composed of multipoles, and has a structure in which a permanent magnet is attached to the surface of the rotor. The manufactured BLDC motor is a 3-phase square wave driving method, with a rated voltage of 24 [V], a rotational speed of 2,500 [rpm], a rated current of 10 [A], and a power consumption of 180 [W]. A microcontroller for driving and controlling the motor was also manufactured.

Flows around crossflow fan (Crossflow Fan 주변의 유동)

  • Kim, Jae-Won;Jung, Yeun-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.678-683
    • /
    • 2001
  • The present work has carried out experimental study on a cross-flow fan system with a simplified vortex wall scroll casing. A cross-flow fan test rig was constructed to obtain pressure rise and volume flow rate for various fan operating conditions. The performance estimation is using a wind tunnel with a motor driven damper for flow rate control and flows are quantitatively visualized by light scattering system with a pulsed laser. Min focus on the visualization is finding a eccentric vortex inside a fan which is a major factor reducing fan efficiency. Comprehensive engineering data are prepared for industrial applications and show a good agreement with a prior work by experimental measurements.

  • PDF

Performance Evaluation and Comparison of Conventional 12/8 and Novel 6/5 Switched Reluctance Motors (기존 12/8 및 새로운 6/5 SRM의 성능분석 및 비교)

  • Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.517-518
    • /
    • 2016
  • In this paper, a novel 6/5 switched reluctance motor (SRM) with segmental rotor is proposed for vehicle cooling fan application. Unlike conventional SRMs, the proposed motor adopts hybrid stator poles and segmental rotor structures, thereby making the motor operate in short flux paths and parts of the flux paths magnetically isolated between the phases. Therefore, compared with conventional SRMs, the proposed structure could improve the output torque density and reduce the core loss, thereby improving the electric utilization of the motor. To verify the proposed structure, the performance of the proposed structure is evaluated. Meanwhile, a conventional 12/8 SRM which has been used for vehicle cooling fan application is also evaluated. Finally, the effectiveness of the proposed SRM is demonstrated by the simulation and experimental results.

  • PDF

Study on Air Blower for Air Management System (소형/고효율 고분자전해질 연료공급모듈용 Air Blower 개발에 관한 연구)

  • Choi, J.H.;Jung, I.S.;Kim, J.H.;Seo, J.M.;Hur, J.;Sung, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.212-214
    • /
    • 2006
  • Air Management System is composed by Pump, Fan, Compressor and Blower In general their performances depend on the capability of the motor, power converter device and controller. Especially, it should be noticed upon designing Air Management System using for Fuel Cell System, that Pump, Fan, Compressor and Blower satisfy the condition of the high performance, high efficiency, high density and reasonable price considering the safety and Economic Efficiency. In order for this, it should be studied that which kind of Motor is the most suited for Air Management System for Fuel Cell, such as Induction Motor, Brushless DC Motor, and Switched Reluctance Motor which is widely using in industry. This paper presents the designing and manufacturing of Outer Rotor Type BLDC Motor and Driver for Air Blower of Air Management System. Experimental results from a laboratory prototype arc presented to validate the feasibility of the proposed Air Blower Motor and Driver.

  • PDF

Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by Numerical Method (수치해석에 의한 고속팬용 밀폐구조형 BLDC모터의 열신뢰성 분석)

  • Moon, Sun-Ae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.130-138
    • /
    • 2010
  • The thermal reliability of the closed-type BLDC motor for the high speed axial fans is analyzed by a numerical method in this paper. Since the module and the motor part are combined in a closed case, the heat generated from a rotor in the motor and the electronic components in the PCB module can not be effectively removed to the outside. Therefore the module will easily fail by high temperature. The accelerated-life testing was accomplished to formulate the life equation and numerical method is used to predict the inside temperature of the PCB module, which is one of the life equation parameter according to the environment. When the environment temperature of BLDC motor is 21, 35 and 50 $^{\circ}C$, the temperature in the PCB space is predicted as 73.4, 87.5 and 102.4 $^{\circ}C$. Then the life time with the temperature are calculated as 2,239, 863 and 328 hours.

Thermal Reliability Analysis of a Closed Type Motor in an Axial Fan for the Large Space Ventilation (대형공간환기용 축류팬에 사용되는 밀폐형 모터의 열신뢰성 분석)

  • Lee, Tae-Gu;Hur, Jin-Huek;Moon, Sun-Ae;Yoo, Ho-Seon;Moon, Seung-Jae;Lee, Jae-Heon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.494-499
    • /
    • 2007
  • The thermal reliability of the closed-type BLDC motor for the high speed axial fans is analyzed by a numerical method in this dissertation. Since the module and the motor part are combined in a closed case, the heat generated from a rotor in the motor and the electronic components in the PCB module can not be effectively removed to the outside. Therefore the module will easily fail by high temperature. The accelerated-life testing was accomplished to formulate the life equation and numerical method is used to predict the inside temperature of the PCB module, which is one of the life equation parameter according to the environment. The experiment for measuring the surface heat flux of the electronic components is carried out to apply the boundary condition of numerical study. When the environment temperature of BLDC motor is 21, 35 and $50^{\circ}C$, the temperature in the PCB space is predicted as 73.4, 87.5 and $102.4^{\circ}C$. Then the life time with the temperature are calculated as 2,239, 863 and 328.

  • PDF

Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by the Accelerated Life Test (가속수명시험에 의한 고속팬용 밀폐구조형 BLDC 모터의 열신뢰성 분석)

  • Lee Tae-Gu;Moon Jong-Sun;Yoo Hoseon;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1169-1176
    • /
    • 2005
  • In this paper, thermal reliability of a closed type BLDC (Brushless DC) motor for high speed axial fan was analyzed by the accelerated life test. The closed type BLDC (Model No. MB1-8855-J01) motor was controlled by PCB module, which was composed of various electrical components. The failure of the closed type BLDC motor happened in PCB module due to high temperature. Failure mechanism of the closed type BLDC motor appears to be electrolyte dry out of capacitor. The accelerate life test was performed in temperature stress of $85^{\circ}C\;and\;105^{\circ}C$, respectively The failure data from the accelerated life test were analyzed and the life in each stress level was estimated with 960h and 261 h. At last, both life expression according to operating temperature of PCB module and life of the closed type BLBC motor in normal condition $(50^{\circ}C)$ were suggested.

A Study on the Performance Characteristics of the Sirocco Fan in a Range Hood (레인지 후드용 시로코 홴 성능 특성에 관한 연구)

  • Park, Sang-Tae;Choi, Young-Seok;Park, Moon-Soo;Kim, Cheol-Ho;Kwon, Oh-Myoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.9-15
    • /
    • 2005
  • This paper presents an experimental and numerical study on the overall performance and local flow characteristics of sirocco fan in a range hood. Measurement of overall performance for sirocco fans were conducted based on AMCA standard 210. The effects of flow blockages due to the motor inside the fan on the fan performance were investigated by experimentally and numerically and the results were compared with each other. The numerical and experimental results show the inlet flow blockage reduces the performance (ie. fan static pressure, design flow rate, maximum efficiency and free delivery flow rate) of fan. It is found that the blockage makes the flow field highly non-uniform through the blade and cause the efficiency decrement.

A Numerical Simulation of Heat and Fluid Flow in the Motor Block Room of a Motorized Car (동력객차 동력실 내부의 열유체 유동의 수치 시뮬레이션)

  • 김학범;허재경;이기열
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.589-594
    • /
    • 1998
  • Heat and fluid flow in the motor block room of a motorized car is numerically simulated. The motorized car, composed of a motor block room and a passenger room, supplies additional Power to achieve the design speed. A motor block, a transformer, and a fan are equipped in the motor block room. Flow phenomena in the ducts on the motor block and power transformer are investigated. Also, the three dimensional heat and fluid flow in the motor block room is simulated to give a qualitative information of the flow characteristics.

  • PDF

Radiator Cooling Fan System by Switched Reluctance Motor for Automobiles (SRM을 이용한 자동차용 Radiator 냉각팬 구동시스템)

  • Yoon, Yong-Ho;Kim, Jae-Moon;Park, Sang-Hoon;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.235-240
    • /
    • 2009
  • In automobile, the introduction of electronically commutated motors has been accompanied by a proliferation of electronic devices. With this proliferation of electronic devices, an emphasis has been placed on EMC issues. This paper is proposed to use SRM as a radiator cooling fan in automotive applications. To drive SRM, Energy efficient C-dump converter is applied. Energy efficient C-dump converter, derived from the conventional C-dump converter, is proposed as a switched reluctance motor (SRM) drive for automotive engine cooling application. It is verified more efficient than other converters through simulation and experiments. And also SRM is valid for automotive applications that have strict EMC standards. Simulation and experimental results obtained on a laboratory prototype are finally presented to evaluate the performance.