• Title/Summary/Keyword: Motion tracking

검색결과 1,217건 처리시간 0.03초

움직임 벡터 기반 파티클 필터를 이용한 비트스트림 상에서의 객체 추적 (Object Tracking on Bitstreams Using a Motion Vector-based Particle Filter)

  • 이종석;오승준
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.409-420
    • /
    • 2018
  • 본 논문은 비트스트림 상에서 객체 추적을 위한 움직임 벡터 기반 파티클 필터(Motion Vector-based Particle Filter: MVPF)와 이를 이용한 객체 추적 시스템을 제안한다. MVPF는 일반적인 파티클 필터의 전이 모델과 관측 모델에 움직임 벡터를 사용하여 파티클의 개수를 유지하면서 정확도를 향상시킨다. 제안하는 객체 추적 시스템에서는 비트스트림에서 추출한 움직임 벡터의 히스토그램을 이용하여 객체의 상태를 예측한다. 제안하는 객체 추적 방법의 성능 평가를 위하여 MPEG 시험 영상과 VOT2013 영상에 적용하였을 때 기존 방법들보다 정확도, F-Measure, IOU(Intersection Of Union) 측면에서 평균적으로 각각 약 30%, 17%, 17% 증가하였다. 주관적 성능 평가를 위하여 추적결과를 박스(box) 형태로 표시하여 비교하였을 때 제안하는 방법이 모든 시험 영상에 대하여 기본 방법들보다 강인하게 객체를 추적한다.

Robot Fish Tracking Control using an Optical Flow Object-detecting Algorithm

  • Shin, Kyoo Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권6호
    • /
    • pp.375-382
    • /
    • 2016
  • This paper realizes control of the motion of a swimming robot fish in order to implement an underwater robot fish aquarium. And it implements positional control of a two-axis trajectory path of the robot fish in the aquarium. The performance of the robot was verified though certified field tests. It provided excellent performance in driving force, durability, and water resistance in experimental results. It can control robot motion, that is, it recognizes an object by using an optical flow object-detecting algorithm, which uses a video camera rather than image-detecting sensors inside the robot fish. It is possible to find the robot's position and control the motion of the robot fish using a radio frequency (RF) modem controlled via personal computer. This paper proposes realization of robot fish motion-tracking control using the optical flow object-detecting algorithm. It was verified via performance tests of lead-lag action control of robot fish in the aquarium.

객체 추적 카메라 제어를 위한 고속의 움직임 검출 및 추적 알고리즘 (A Fast Motion Detection and Tracking Algorithm for Automatic Control of an Object Tracking Camera)

  • 강동구;나종범
    • 방송공학회논문지
    • /
    • 제7권2호
    • /
    • pp.181-191
    • /
    • 2002
  • 능동 감시 카메라에서 얻어진 연속 영상에는 카메라의 움직임에 의해 발생하는 전역 움직임과 이동 물체의 국부 움직임이 동시에 존재한다. 따라서 이동 물체의 자동 추적을 위한 영상 기반의 실시간 감시 시스템의 구현을 위해 이동 물체의 국부 움직임만을 검출하고 추적할 수 있는 효과적인 알고리즘이 요구된다. 이 논문에서는 연속 영상의 차영상을 이용하는 빠르고 효율적인 움직임 검출 및 추적 알고리즘을 제안한다. 이 알고리즘은 우선 물체의 속도를 고려하여 이전 영상을 선택하고. 현재 영상과 선택된 이전 영상에 존재하는 전역 움직임을 빠르고 정확하게 추정하기 위해 신뢰성 있는 소수의 정합 블록만을 선택하여 사용한다. 마지막으로 현재 영상과 전역 움직임이 보상된 이전 영상의 차영상을 얻고, 현재 영상과 차영상의 상관 관계를 이용하여 차영상에 존재하는 강한 잡음을 효과적으로 제거하여 이동 물체 영역을 추출한다. 팬틸트 유닛과 AMD 800MHz 프로세서가 내장된 PC로 구성된 능동 카메라 시스템에 제안한 알고리즘을 적용하였다. 이 시스템은 320$\times$240 크기의 영상을 처리하며 수평 수직 방향의 $\pm$20 탐색 영역에서 전역 움직임을 추정할 때 약 50 frames/sec 의 속도로 움직임 검출이 가능하므로 빠른 이동 물체의 실시간 추적에 적합하다.

단일 나노입자의 다중 물리량의 평가를 위한 입자 모션 트랙킹 알고리즘 (Particle-motion-tracking Algorithm for the Evaluation of the Multi-physical Properties of Single Nanoparticles)

  • 박예은;강지윤;박민수;노효웅;박홍식
    • 센서학회지
    • /
    • 제31권3호
    • /
    • pp.175-179
    • /
    • 2022
  • The physical properties of biomaterials are important for their isolation and separation from body fluids. In particular, the precise evaluation of the multi-physical properties of single biomolecules is essential in that the correlation between physical and biological properties of specific biomolecule. However, the majority of scientific equipment, can only determine specific-physical properties of single nanoparticles, making the evaluation of the multi-physical properties difficult. The improvement of analytical techniques for the evaluation of multi-physical properties is therefore required in various research fields. In this study, we developed a motion-tracking algorithm to evaluate the multi-physical properties of single-nanoparticles by analyzing their behavior. We observed the Brownian motion and electric-field-induced drift of fluorescent nanoparticles injected in a microfluidic chip with two electrodes using confocal microscopy. The proposed algorithm is able to determine the size of the nanoparticles by i) removing the background noise from images, ii) tracking the motion of nanoparticles using the circular-Hough transform, iii) extracting the mean squared displacement (MSD) of the tracked nanoparticles, and iv) applying the MSD to the Stokes-Einstein equation. We compared the evaluated size of the nanoparticles with the size measured by SEM. We also determined the zeta-potential and surface-charge density of the nanoparticles using the extracted electrophoretic velocity and the Helmholtz-Smoluchowski equation. The proposed motion-tracking algorithm could be employed in various fields related to biomaterial analysis, such as exosome analysis.

Adaptive Color Snake Model for Real-Time Object Tracking

  • Seo, Kap-Ho;Jang, Byung-Gi;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.740-745
    • /
    • 2003
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks suck as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. Snake is designed no the basis of snake energies. Segmenting and tracking can be executed successfully by energy minimization. In this research, two new paradigms for segmentation and tracking are suggested. First, because the conventional method uses only intensity information, it is difficult to separate an object from its complex background. Therefore, a new energy and design schemes should be proposed for the better segmentation of objects. Second, conventional snake can be applied in situations where the change between images is small. If a fast moving object exists in successive images, conventional snake will not operate well because the moving object may have large differences in its position or shape, between successive images. Snakes's nodes may also fall into the local minima in their motion to the new positions of the target object in the succeeding image. For robust tracking, the condensation algorithm was adopted to control the parameters of the proposed snake model called "adaptive color snake model(SCSM)". The effectiveness of the ACSM is verified by appropriate simulations and experiments.

  • PDF

Estimation of Moving Information for Tracking of Moving Objects

  • Park, Jong-An;Kang, Sung-Kwan;Jeong, Sang-Hwa
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.300-308
    • /
    • 2001
  • Tracking of moving objects within video streams is a complex and time-consuming process. Large number of moving objects increases the time for computation of tracking the moving objects. Because of large computations, there are real-time processing problems in tracking of moving objects. Also, the change of environment causes errors in estimation of tracking information. In this paper, we present a new method for tracking of moving objects using optical flow motion analysis. Optical flow represents an important family of visual information processing techniques in computer vision. Segmenting an optical flow field into coherent motion groups and estimating each underlying motion are very challenging tasks when the optical flow field is projected from a scene of several moving objects independently. The problem is further complicated if the optical flow data are noisy and partially incorrect. Optical flow estimation based on regulation method is an iterative method, which is very sensitive to the noisy data. So we used the Combinatorial Hough Transform (CHT) and Voting Accumulation for finding the optimal constraint lines. To decrease the operation time, we used logical operations. Optical flow vectors of moving objects are extracted, and the moving information of objects is computed from the extracted optical flow vectors. The simulation results on the noisy test images show that the proposed method finds better flow vectors and more correctly estimates the moving information of objects in the real time video streams.

  • PDF

이동 로봇을 위한 전정안반사 기반 비젼 추적 시스템의 인식 성능 평가 (Recognition Performance of Vestibular-Ocular Reflex Based Vision Tracking System for Mobile Robot)

  • 박재홍;반욱;최태영;권현일;조동일;김광수
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.496-504
    • /
    • 2009
  • This paper presents a recognition performance of VOR (Vestibular-Ocular Reflex) based vision tracking system for mobile robot. The VOR is a reflex eye movement which, during head movements, produces an eye movement in the direction opposite to the head movement, thus maintaining the image of interested objects placed on the center of retina. We applied this physiological concept to the vision tracking system for high recognition performance in mobile environments. The proposed method was implemented in a vision tracking system consisting of a motion sensor module and an actuation module with vision sensor. We tested the developed system on an x/y stage and a rate table for linear motion and angular motion, respectively. The experimental results show that the recognition rates of the VOR-based method are three times more than non-VOR conventional vision system, which is mainly due to the fact that VOR-based vision tracking system has the line of sight of vision system to be fixed to the object, eventually reducing the blurring effect of images under the dynamic environment. It suggests that the VOR concept proposed in this paper can be applied efficiently to the vision tracking system for mobile robot.

Implementation of Disparity Information-based 3D Object Tracking

  • Ko, Jung-Hwan;Jung, Yong-Woo;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • 제6권4호
    • /
    • pp.16-25
    • /
    • 2005
  • In this paper, a new 3D object tracking system using the disparity motion vector (DMV) is presented. In the proposed method, the time-sequential disparity maps are extracted from the sequence of the stereo input image pairs and these disparity maps are used to sequentially estimate the DMV defined as a disparity difference between two consecutive disparity maps Similarly to motion vectors in the conventional video signals, the DMV provides us with motion information of a moving target by showing a relatively large change in the disparity values in the target areas. Accordingly, this DMV helps detect the target area and its location coordinates. Based on these location data of a moving target, the pan/tilt embedded in the stereo camera system can be controlled and consequently achieve real-time stereo tracking of a moving target. From the results of experiments with 9 frames of the stereo image pairs having 256x256 pixels, it is shown that the proposed DMV-based stereo object tracking system can track the moving target with a relatively low error ratio of about 3.05 % on average.

LSTM Network with Tracking Association for Multi-Object Tracking

  • Farhodov, Xurshedjon;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1236-1249
    • /
    • 2020
  • In a most recent object tracking research work, applying Convolutional Neural Network and Recurrent Neural Network-based strategies become relevant for resolving the noticeable challenges in it, like, occlusion, motion, object, and camera viewpoint variations, changing several targets, lighting variations. In this paper, the LSTM Network-based Tracking association method has proposed where the technique capable of real-time multi-object tracking by creating one of the useful LSTM networks that associated with tracking, which supports the long term tracking along with solving challenges. The LSTM network is a different neural network defined in Keras as a sequence of layers, where the Sequential classes would be a container for these layers. This purposing network structure builds with the integration of tracking association on Keras neural-network library. The tracking process has been associated with the LSTM Network feature learning output and obtained outstanding real-time detection and tracking performance. In this work, the main focus was learning trackable objects locations, appearance, and motion details, then predicting the feature location of objects on boxes according to their initial position. The performance of the joint object tracking system has shown that the LSTM network is more powerful and capable of working on a real-time multi-object tracking process.

운동 제어를 위한 운동 포착 및 재현 시스템 (A Motion Capture and Mimic System for Motion Controls)

  • 윤중선
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.59-66
    • /
    • 1997
  • A general procedure for a motion capture and mimic system has been delineated. Utilizing sensors operated in the magnetic fields, complicated and optimized movements are easily digitized to analyze and repreduce. The system consists of a motion capture module, a motion visualization module, a motion plan module, a motion mimic module, and a GUI module. Design concepts of the system are modular, open, and user friendly to ensure the overall system performance. Custom-built and/or off-the-shelf modules are ease- ly integrated into the system. With modifications, this procedure can be applied for complicated motion controls. This procedure is implemented on tracking a head and balancing a pole. A neural controller based on this control scheme dtilizing human motions can easily evolve from a small amount of learning data.

  • PDF