• 제목/요약/키워드: Motion time

검색결과 5,239건 처리시간 0.035초

Influence of glide path size and operating kinetics on time to reach working length and fracture resistance of Twisted File adaptive and Endostar E3 nickel-titanium file systems

  • Ramyadharshini, Tamilkumaran;Sherwood, Inbaraj Anand;Vigneshwar, V Shanmugham;Prince, Prakasam Ernest;Vaanjay, Murugadoss
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.22.1-22.10
    • /
    • 2020
  • Objectives: This study investigated the influence of glide path size and operating kinetics on the time to reach the working length and the fracture resistance of Twisted File (TF) and Endostar E3 files. Materials and Methods: A total of 120 mandibular single-rooted premolars were selected. Two methods of kinetic motion (TF adaptive and continuous rotary motion) and file systems (TF and Endostar E3) were employed. The files were used in root canals prepared to apical glide path sizes of 15, 20, and 25. The time taken to reach the working length and the number of canals used before the instrument deformed or fractured were noted. Fractured instruments were examined with scanning electron microscopy. Results: The TF system took significantly more time to reach the working length than the Endostar E3 system. Both systems required significantly more time to reach the working length at the size 15 glide path than at sizes 20 and 25. A greater number of TFs than Endostar E3 files exhibited deformation, and a higher incidence of instrument deformation was observed in adaptive than in continuous rotary motion; more deformation was also observed with the size 15 glide path. One TF was fractured while undergoing adaptive motion. Conclusions: No significant difference was observed between continuous rotary and adaptive motion. The TF system and adaptive motion were associated with a higher incidence of deformation and fracture. Apical glide path sizes of 20 and 25 required significantly less time to reach the working length than size 15.

Explicit Motion of Dynamic Systems with Position Constraints

  • Eun, Hee-Chang;Yang, Keun-Hyuk;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.538-544
    • /
    • 2003
  • Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier's method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss's principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.

가상 공간에서 에이전트 생성을 위한 실시간 마커프리 모션캡쳐 시스템 (Real-time Marker-free Motion Capture System to Create an Agent in the Virtual Space)

  • 김성은;이란희;박창준;이인호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.199-202
    • /
    • 2002
  • We described a real-time 3D computer vision system called MIMIC(Motion interface f Motion information Capture system) that can capture and save motion of an actor. This system analyzes input images from vision sensors and searches feature information like a head, hands, and feet. Moreover, this estimates intermediated joints as an elbow and hee using feature information and makes 3D human model having 20 joints. This virtual human model mimics the motion of an actor in real-time. Therefore this system can realize the movement of an actor unaffectedly because of making intermediated joint for complete human body contrary to other marker-free motion capture system.

  • PDF

겐트리에 대한 구동 시간의 비교 (A Comparison of the Moving Time about Gantry)

  • 김순호;김치수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권3호
    • /
    • pp.135-140
    • /
    • 2017
  • SMT장비는 전자 부품을 흡착하여 PCB상에 정확히 실장 하는 장비이다. 이를 위해서는 중간 위치에 설치된 카메라 앞에서 정지하여 비전검사를 한 후 실장 위치로 이동한다. 본 논문에서는 카메라 앞에서 멈추어 비전 검사를 한 후 실장하는 방법(stop-motion)과 카메라 앞에서 움직이면서 비전 검사를 한 후 실장하는 방법(fly-motion)을 비교하였다. 그 결과 fly-motion의 시간 효율이 stop-motion보다 9% 증가한 것을 보여주었다.

Edge Detection과 Lucas-Kanade Optical Flow 방식에 기반한 디지털 영상 안정화 기법 (Digital Image Stabilization Based on Edge Detection and Lucas-Kanade Optical Flow)

  • 이혜정;최윤원;강태훈;이석규
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we propose a digital image stabilization technique using edge detection and Lucas-Kanade optical flow in order to minimize the motion of the shaken image. The accuracy of motion estimation based on block matching technique depends on the size of search window, which results in long calculation time. Therefore it is not applicable to real-time system. In addition, since the size of vector depends on that of block, it is difficult to estimate the motion which is bigger than the block size. The proposed method extracts the trust region using edge detection, to estimate the motion of some critical points in trust region based on Lucas-Kanade optical flow algorithm. The experimental results show that the proposed method stabilizes the shaking of motion image effectively in real time.

실시간 정밀 모션 제어를 위한 안드로이드 응용 설계 및 구현 (Design and Implementation of an Android Application for Real-time Motion Control)

  • 김도현;강형석;강정남;이은규;김강희
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권4호
    • /
    • pp.315-319
    • /
    • 2015
  • 본 논문은 실시간 정밀 모션 제어를 위한 안드로이드 응용의 설계와 구현을 다룬다. 안정적인 실시간 성능을 제공하기 위해서 다축 모터들이 특정 모션을 만들어낼 수 있도록 실시간 필드버스에 주기적으로 좌표 벡터 명령을 전달하고 그에 대한 피드백을 받는 모션 제어부를 데몬 프로세스 형태의 안드로이드 서비스로 구현하고, 이 모션 제어 서비스에 모션의 좌표 벡터들을 생성하여 전달하는 모션 계획부를 안드로이드 UI 응용으로 구현하였다. 이러한 소프트웨어 구성을 지원하기 위해서 멀티코어 프로세서를 모션 제어 서비스의 실행을 전담하는 실시간 코어들과 UI 응용의 실행을 전담하는 비실시간 코어로 나누었으며, 모션 제어 서비스와 응용 사이의 통신을 공유 메모리 형태로 구현하였다. 성능 측정 결과, 8축 모터들을 2개씩 그룹지어 4개의 쓰레드로 제어하는 경우에도 태스크 활성화 지터의 99%를 ${\pm}55{\mu}s$ 미만으로 유지하면서, 모션 제어 주기를 2ms까지 달성할 수 있었다.

병렬구조형 차량운전 모사장치의 성능평가 및 분석 (Analysis and performance evaluation of the parallel typed for a vehicle driving simulator)

  • 박일경;박경균;김정하;이운성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1481-1484
    • /
    • 1997
  • The vehicle driving simulator expects vehicle motion with real-time simulation arise from driver's steering, accelerating, stopping and simulates motion of vehicl with visula, audio and washout algorithm. And it gives a vivid feeling to driver in reality. Vehicle driving simulator with vehicle integration control system is used for analysis of analysis of vehicle controllaility, steering capacity and safety in various pseudo environment alike. basides, it analyzeds vehicle safety factor dirver's reaction and promotes traffic safety without driver's own risks. The main proceduress of development of the vehicle driving simulator are classified by 3 parts. first the motion base system which can be generated by the motion queues, should be developed. Secondly, real-time vehicle software which can afford the vehicle dynamics, might be constructed. The third procedure is the integration of vehicle driing simulator which can be interconnected between visual systems with motion base. In this study, we are to study of the motion base for a vehicle driving simulator design and that of its real time control and using an extra gyro sensor and accelerometers to find a position and an orientatiion of the moving platform except for calculating forward kinematics. To drive the motion base, we use National Instruments corp's Labview software. Furthemore, we use analysis module for the vehicle motionand the washout algorithm module to consummate driving simulator, which can be driven by human in reality, so we are doing experimentally process about various vehicle motion conditon.

  • PDF

Fractal Depth Map Sequence Coding Algorithm with Motion-vector-field-based Motion Estimation

  • Zhu, Shiping;Zhao, Dongyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.242-259
    • /
    • 2015
  • Three-dimensional video coding is one of the main challenges restricting the widespread applications of 3D video and free viewpoint video. In this paper, a novel fractal coding algorithm with motion-vector-field-based motion estimation for depth map sequence is proposed. We firstly add pre-search restriction to rule the improper domain blocks out of the matching search process so that the number of blocks involved in the search process can be restricted to a smaller size. Some improvements for motion estimation including initial search point prediction, threshold transition condition and early termination condition are made based on the feature of fractal coding. The motion-vector-field-based adaptive hexagon search algorithm on the basis of center-biased distribution characteristics of depth motion vector is proposed to accelerate the search. Experimental results show that the proposed algorithm can reach optimum levels of quality and save the coding time. The PSNR of synthesized view is increased by 0.56 dB with 36.97% bit rate decrease on average compared with H.264 Full Search. And the depth encoding time is saved by up to 66.47%. Moreover, the proposed fractal depth map sequence codec outperforms the recent alternative codecs by improving the H.264/AVC, especially in much bitrate saving and encoding time reduction.

비전 센서의 앨리어싱 방지 필터링 모방 기법 (Emulation of Anti-alias Filtering in Vision Based Motion Mmeasurement)

  • 김정현
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.18-26
    • /
    • 2011
  • This paper presents a method, Exposure Controlled Temporal Filtering (ECF), applied to visual motion tracking, that can cancel the temporal aliasing of periodic vibrations of cameras and fluctuations in illumination through the control of exposure time. We first present a theoretical analysis of the exposure induced image time integration process and how it samples sensor impingent light that is periodically fluctuating. Based on this analysis we develop a simple method to cancel high frequency vibrations that are temporally aliased onto sampled image sequences and thus to subsequent motion tracking measurements. Simulations and experiments using the 'Center of Gravity' and Normalized Cross-Correlation motion tracking methods were performed on a microscopic motion tracking system to validate the analytical predictions.

리니어 스케일을 이용한 NC 선반의 직선 운동정도 측정 (Measuring of Linear Motion Accuracy of NC Lathe using Linear Scales)

  • 김영석;김재열;한지희;정정표;윤원주;송인석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1243-1248
    • /
    • 2003
  • It is very important to measure linear motion accuracy of NC lathe as it affects all other parts of machines machined by them in industries. If the motion accuracy of NC lathe is bad, the dimension accuracy and the change-ability of works will be bad in the assembly of machine parts. In this paper, computer software systems are organized to measure linear motion of ATC(Automatic tool changer) on zx plane of NC lathe using two linear scales and the time pulses coming out from computer in order to get data at constant time intervals from the linear scales. And each sets of error data obtained from the test is discripted to plots and the results of linear motion errors are expressed as numerics by computer treatment.

  • PDF