• Title/Summary/Keyword: Motion in Depth

Search Result 627, Processing Time 0.026 seconds

Mechanism of Seismic Earth Pressure on Braced Excavation Wall Installed in Shallow Soil Depth by Dynamic Centrifuge Model Tests (동적원심모형실험을 이용한 얕은 지반 굴착 버팀보 지지 흙막이 벽체의 지진토압 메커니즘 분석)

  • Yun, Jong Seok;Park, Seong Jin;Han, Jin Tae;Kim, Jong Kwan;Kim, Dong Chan;Kim, DooKie;Choo, Yun Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.193-202
    • /
    • 2023
  • In this paper, a dynamic centrifuge model test was conducted on a 24.8-meter-deep excavation consisting of a 20 m sand layer and 4.8 m bedrock, classified as S3 by Korean seismic design code KDS 17 10 00. A braced excavation wall supports the hole. From the results, the mechanism of seismically induced earth pressure was investigated, and their distribution and loading points were analyzed. During earthquake loadings, active seismic earth pressure decreases from the at-rest earth pressure since the backfill laterally expands at the movement of the wall toward the active direction. Yet, the passive seismic earth pressure increases from the at-rest earth pressure since the backfill pushes to the wall and laterally compresses at it, moving toward a passive direction and returning to the initial position. The seismic earth pressure distribution shows a half-diamond distribution in the dense sand and a uniform distribution in loose sand. The loading point of dynamic thrust corresponding with seismic earth pressure is at the center of the soil backfill. The dynamic thrust increased differently depending on the backfill's relative density and input motion type. Still, in general, the dynamic thrust increased rapidly when the maximum horizontal displacement of the wall exceeded 0.05 H%.

Admittance Model-Based Nanodynamic Control of Diamond Turning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어)

  • Jeong, Sanghwa;Kim, Sangsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Seismic Zonation of Site Period at Daejeon within Spatial GIS tool (공간 GIS 기법을 활용한 대전 지역 부지 주기의 지진 구역화)

  • Sun, Chang-Guk;Shin, Jin-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.563-574
    • /
    • 2008
  • Most of earthquake-induced geotechnical hazards have been caused by the site effects relating to the amplification of ground motion, which are strongly influenced by the local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated GIS-based information system for geotechnical data, called geotechnical information system (GTIS), was constructed to establish a regional counterplan against earthquake-induced hazards at an urban area, Daejeon, which is represented as a hub of research and development in Korea. To build the GTIS for the area of interesting, pre-existing geotechnical data collections were performed across the extended area including the study area and a walk-over site survey was additionally carried out to acquire surface geo-knowledge data. For practical application of the GTIS used to estimate the site effects at the area of interesting, seismic microzoning map of the characteristic site period was created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation for site classification according to the spatial distribution of the site period was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site in the study area. Based on the case study on seismic zonations at Daejeon, it was verified that the GIS-based GTIS was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation.

  • PDF

Implementation of Marine Optical Sensor System Using A Line-CCD (Line-CCD를 이용한 수중광학 센서 시스템의 구현)

  • Jeong, Ui-Seok;Lee, Dong-Ho;Lee, Kyoung-Woon;Lim, A-Ram;Jeong, Jae-Wook;Park, Jung-Ho
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.244-249
    • /
    • 2010
  • We fabricated optical sensor system that take a measurement particles using a line-CCD in ocean. To measure particles, we used 680nm laser diode which is appropriate. we tested to operate optical system in water tank and ocean. It has performance that detected signal of sensors transfer microprocessor, FPGA as long as move up and down it's motion. The system algorithm also analysis output -pressure, temperature, particle numbers in depth.-For experiment, our particle sensor system has high accuracy counter. therefore, we proposed that a line-CCD is available on optical sensor system in ocean.

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

On the Hydrodynamic Forces acting on a Partially Submerged Bag (부분적으로 물에 잠긴 백에 작용하는 유체역학적 힘)

  • G.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.104-113
    • /
    • 1992
  • The hydrodynamic problem is treated here when a pressurized bag is submerged partially into water and the end points of it oscillate. SES(Surface Effect Ship)has a bag filled with pressurized air at the stern in order to prevent the air leakage, and the pitch motion of SES is largely affected by the hydrodynamic force of the bag. The shape of a bag can be determined with the pressure difference between inside and outside. Once the hydrodynamic pressure is given, the shape of a bag can be obtained, however in order to calculate the hydrodynamic pressure we should know the shape change of the bag, and vice versa. Therefore the type of boundary condition on the surface of a bag is a moving boundary like a free surface boundary. In this paper, the formulation of this problem was done and linearized. The calculation scheme for the radiation problem of an oscillating bag is shown in comparison with the case that the bag is treated as rigid body. The hydrodynamic forces are calculated for various values of the pressure inside the bag and the submerged depth.

  • PDF

Applying Focused and Radial Shock Wave for Calcific Tendinitis of the Shoulder : Randomized Controlled Study

  • Kim, Jonggun;Oh, Changmin;Yoo, John;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.356-362
    • /
    • 2022
  • Objective: Extracorporeal shock wave therapy (ESWT) is a nonsurgical treatment alternative to surgery for various musculoskeletal diseases that have traditionally been difficult to treat conservatively, including calcific tendinitis, tennis elbow, and plantar fasciitis. This study evaluated the effect of focused and radial shock wave therapy for calcific tendinitis of the shoulder. Design: Randomized controlled study Methods: Forty participants with calcific tendinitis were randomized into focused shock wave therapy (FSWT, n=20) and radial shock wave therapy (RSWT, n=20) groups. Patients were examined before and one week after treatment. Pain intensity was subjectively assessed using the visual analogue scale and function was assessed using the Constant-Murley score (CMS) and range of motion (ROM). Results: The results showed a significant decrease in pain and significant increase in shoulder mobility and function in both groups. However, FSWT was significantly more effective than RSWT, based on CMS and ROM assessment. Conclusions: Although it is possible to raise the energy intensity of RSWT to increase the depth at which the energy becomes dispersed, higher energy intensity is associated with a greater risk of severe neurovascular damage, and that high-intensity stimulation can cause adverse effects such as pain and petechiae. Therefore, FSWT is considered to be a safe and effective method for treating tendinous lesions while minimizing adverse effects. In conclusion, both FSWT and RSWT can reduce pain and increase mobility and function. FSWT can be considered as an alternative for calcific tendinitis of the shoulder.

Comparison of Methods Predicting VS30 from Shallow VS Profiles and Suggestion of Optimized Coefficients (얕은 심도 VS주상도를 활용한 VS30 예측 방법론 비교 및 최적 계수 제시)

  • Choi, Inhyeok;Kwak, Dongyoup
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.3
    • /
    • pp.15-23
    • /
    • 2020
  • Ground motion models predicting intensity measures on surface use a time-averaged shear wave velocity, VS30, as a key variable simulating site effect. The VS30 can be directly estimated from VS profiles if the profile depth (z) is greater than or equal to 30 m. However, some sites have VS profiles with z < 30 m. In this case VS30 can be predicted using extension models. This study proposes new coefficient sets for existing prediction equations using 297 Korea VS profiles. We have collected VS profiles from KMA and Geoinfo database. Fitting six existing methods to data, we suggest new coefficients for each method and evaluate their performance. It turns out that if z ≥ 15 m, the standard deviation (σ) of residual in log10 is 0.061, which indicates that the estimated VS30 is nearly accurate. If z < 15 m, the σ keeps increasing up to 0.1 for z = 5 m, so we caution the use of models at very low z. Nonetheless, we recommend investigating up to 30 m depth for VS30 calculation if possible.

Observation of Semi-diurnal Internal Tides and Near-inertial Waves at the Shelf Break of the East China Sea

  • Park, Jae-Hun;Lie, Heung-Jae;Guo, Binghuo
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.409-419
    • /
    • 2011
  • Semi-diurnal internal tides and near-inertial waves are investigated using moored current meter measurements at four sites along the shelf break of the East China Sea during August 1987 and May-June 1988. Each mooring is equipped with four current meters spanning from near surface to near bottom. Spectral analyses of all current data reveal dominant spectra at the semi-diurnal frequency band, where the upper and lower current measurements show out-of-phase relationship between them with significant coherences. These are consistent with typical characteristics of the first-mode semi-diurnal internal tide. Strong intensification of the near-bottom baroclinic currents is observed only at one site, where the ratio of the bottom slope to the slope of the internal-wave characteristics at the semi-diurnal frequency is close to unity. An energetic near-inertial wave event is observed during the first half of May-June 1988 observation at two mooring sites. Rotary spectra reveal that the most dominant signal is clockwise rotating motion at the near-inertial frequency band. Upward phase and downward energy propagations, shown in time-depth contour plots of near-inertial bandpass filtered currents, are confirmed by cross correlations between the upper- and lower-layer current measurements. The upward-propagating phase speed is estimated to be about 0.13 cm $s^{-1}$ at both sites. Significant coherences and in-phase relationships of near-inertial currents at the same or similar depths between the two sites are observed in spite of their long distance of about 110 km.

Experimental Analysis of the Parameters Governing Scour in Plunge Pool with Cohesionless Bed Material (침강지내 비점성하상의 세굴 지배인자에 대한 실험적 해석)

  • Son, Kwang Ik;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.123-129
    • /
    • 1993
  • Because the existing scour prediction formulas for plunge pools of pipe culverts and spillways give a wide range of predicted scour depths, it is difficult to estimate actual scour depths. A review of literature showed that wide range of predicted values was caused mostly by lack of thorough analysis of the scour mechanism. In this study, the effects of the parameters govering scour were examined, and the scour potentials were measured. The major variables govering scour were the velocity and size of jet impinging into the plunge pool, the submerged weight of bed material, the ratio of jet size to bed material size, the tail watr depth of the plunge pool, and the angle of jet impact on water surface. The ratio of jet size to bed material size to bed material size was found to be another significant parameter affecting scour for larger bed materials. A densimetric Froude nember of the bed material in incipient motion was formulated. This number represented the scour potential of the jet at the point where the bed material was tested.

  • PDF