• Title/Summary/Keyword: Motion image

Search Result 2,139, Processing Time 0.029 seconds

Cancellation of MRI Motion Artifact in Image Plane

  • Kim Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • In this study, a new algorithm for canceling a MRI artifact due to the translational motion In the image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction were estimated simultaneously. However, the feature of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by the different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in an reverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF

Robust Least Squares Motion Deblurring Using Inertial Sensor for Strapdown Image IR Sensors (스트랩다운 적외선 영상센서를 위한 관성센서 기반 강인최소자승 움직임 훼손영상 복원 기법)

  • Kim, Ki-Seung;Ra, Sung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.314-320
    • /
    • 2012
  • This paper proposes a new robust motion deblurring filter using the inertial sensor measurements for strapdown image IR applications. With taking the PSF measurement error into account, the motion blurred image is modeled by the linear uncertain state space equation with the noise corrupted measurement matrix and the stochastic parameter uncertainty. This motivates us to solve the motion deblurring problem based on the recently developed robust least squares estimation theory. In order to suppress the ringing effect on the deblurred image, the robust least squares estimator is slightly modified by adoping the ridge-regression concept. Through the computer simulations using the actual IR scenes, it is demonstrated that the proposed algorithm shows superior and reliable motion deblurring performance even in the presence of time-varying motion artifact.

Motion Depth Generation Using MHI for 3D Video Conversion (3D 동영상 변환을 위한 MHI 기반 모션 깊이맵 생성)

  • Kim, Won Hoi;Gil, Jong In;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-437
    • /
    • 2017
  • 2D-to-3D conversion technology has been studied over past decades and integrated to commercial 3D displays and 3DTVs. Generally, depth cues extracted from a static image is used for generating a depth map followed by DIBR (Depth Image Based Rendering) for producing a stereoscopic image. Further, motion is also an important cue for depth estimation and is estimated by block-based motion estimation, optical flow and so forth. This papers proposes a new method for motion depth generation using Motion History Image (MHI) and evaluates the feasiblity of the MHI utilization. In the experiments, the proposed method was performed on eight video clips with a variety of motion classes. From a qualitative test on motion depth maps as well as the comparison of the processing time, we validated the feasibility of the proposed method.

Object-oriented coder using block-based motion vectors and residual image compensation (블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기)

  • 조대성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF

Emulation of Anti-alias Filtering in Vision Based Motion Mmeasurement (비전 센서의 앨리어싱 방지 필터링 모방 기법)

  • Kim, Jung-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.18-26
    • /
    • 2011
  • This paper presents a method, Exposure Controlled Temporal Filtering (ECF), applied to visual motion tracking, that can cancel the temporal aliasing of periodic vibrations of cameras and fluctuations in illumination through the control of exposure time. We first present a theoretical analysis of the exposure induced image time integration process and how it samples sensor impingent light that is periodically fluctuating. Based on this analysis we develop a simple method to cancel high frequency vibrations that are temporally aliased onto sampled image sequences and thus to subsequent motion tracking measurements. Simulations and experiments using the 'Center of Gravity' and Normalized Cross-Correlation motion tracking methods were performed on a microscopic motion tracking system to validate the analytical predictions.

Hierarchical 3D Sgmentation of Image Sequence Using Motion Information Based on Mathematical Morphology (수리 형태학 기반의 움직임 정보를 이용한 연속영상의 계층적 3차원 분할)

  • 여영준;송근원;박영식;김기석;하영호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.78-88
    • /
    • 1997
  • A three dimensional-two spatical dimensions plus time-image segmentation is widely used in a very low bit rate image sequence coding because it can solve the region correspondence problem. Mathematical morphology is a very efficient tool for the segmentation because it deals well with geometric features such as size, shape, contrast and connectivity. But if the motion in the image sequence is large in time axis, the conventional 3D morphological segmentation algorithm have difficulty in solving region correspondence problem. To alleviate this problem, we propose the hierarchical image sequence segmentation algorithm that uses the region motion information. Since the motion of a region in previous level affects that in current level uses the previous motion information to increase region correspondence. Simulation result shows improved performance for sequence frames with large motion.

  • PDF

Stereoscopic Sequence Coding Using MPEG-2 MVP (MPEG-2 MVP를 이용한 스테레오 동영상부호화)

  • 배태면;권동현한규필하영호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.143-146
    • /
    • 1998
  • A new stereoscopic codec. structure using MPEG-2 multiview profile is presented in this paper. In the suggested codec., the left image is coded with motion estimation in the base layerand the right image is coded with disparity estimation in the enhancement layer. Since it is possible to calculate rough motion of the right image sequence with disparity and motion of the left image sequence, motion compensation of the enhancement layer is performed without motion estimation. Since the proposed codec. does not perform motion estimation in the enhancement layer encoding, it is simple and reduces the encoding time. We compared the PSNR of encoded image with three different structured codec., and the experimental results show that suggested codec. has comparable with other codecs.

  • PDF

Improving Performance of Digital Image Stabilization using Adoptive motion estimation Area selection (적응적 움직임 추정영역 선택을 사용한 영상안정화 성능개선)

  • Kim, Dong-Gyun;Lee, Jin-Hee;Yoo, Yoon-Jong;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.18-24
    • /
    • 2008
  • In this paper we propose a novel method which improves digital image stabilization performance using adoptive selection of motion estimation area. Candidate area for motion estimation is decided and through two processes, multi image reference and edge energy distinction, final motion estimation area is selected. Then Motion estimation and compensation is following in selected area. Experimental results show that proposed method improves performance of digital image stabilization.

Digital Image Stabilization Based on Edge Detection and Lucas-Kanade Optical Flow (Edge Detection과 Lucas-Kanade Optical Flow 방식에 기반한 디지털 영상 안정화 기법)

  • Lee, Hye-Jung;Choi, Yun-Won;Kang, Tae-Hun;Lee, Suk-Gyu
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we propose a digital image stabilization technique using edge detection and Lucas-Kanade optical flow in order to minimize the motion of the shaken image. The accuracy of motion estimation based on block matching technique depends on the size of search window, which results in long calculation time. Therefore it is not applicable to real-time system. In addition, since the size of vector depends on that of block, it is difficult to estimate the motion which is bigger than the block size. The proposed method extracts the trust region using edge detection, to estimate the motion of some critical points in trust region based on Lucas-Kanade optical flow algorithm. The experimental results show that the proposed method stabilizes the shaking of motion image effectively in real time.

A Study on Locational Control of Motion Ghost in Magnetic Imaging System (자기공명영상장치(磁氣共鳴映像裝置)에서 움직임허상(虛像)의 위치제어(位置制御)에 관(關)한 연구(硏究))

  • Lee, Who-Min
    • Journal of radiological science and technology
    • /
    • v.16 no.2
    • /
    • pp.19-26
    • /
    • 1993
  • Magnetic Resonance Image represents three-dimensional diagnostic imaging technique using both nuclear magnetic resonance phenomenon and computer. Compared with computed tomography (CT), MRI have advantages harmless to patient's body, three-dimensional image with high resolution and disadvantages long data acquisition time because of long T1 relaxation time, relatively low signal to noise ratio, high cost of setting, also. As physiologic motion of tissue results in motion ghost in MRI, high 2.0Tesla make improve low signal to noise ratio. This study have aim to improve image quality with controling motion ghost of tissue. Supposing a moving pixel in constant frequency, one pixel make two ghosts which are same size and different anti-phase. So, this study will show adjust parameter on locational control of motion ghost. Author made moving phantom replaced by respiratory movement of human, researched change of motion frequency, FOV by location shift, and them decided optimal FOV (field of view). The results are as follows: 1. The frequency content of the motion determines how far the image always appear in phase-encoding direction, the morphology of the ghost image is characteristic of the direction of the motion and its amplitude. 2. Double FOV of fixed signal object for locational control of motion ghost is recommended. Decreasement of spatial resolution by increasing FOV can compensate on increasing of matrix in spite of scan time increasement.

  • PDF