We present a Taekwondo training system using a hybrid sensing technique of a body sensor and a visual sensor. Using a body sensor (accelerometer), rotational and inertial motion data are captured which are important for Taekwondo motion detection and evaluation. A visual sensor (camera) captures and records the sequential images of the performance. Motion chunk is proposed to structuralize Taekwondo motions and design HMM (Hidden Markov Model) for motion recognition. Trainees can evaluates their trial motions numerically by computing the distance to the standard motion performed by a trainer. For motion training video, the real-time video images captured by a camera is overlayed with a visualized body sensor data so that users can see how the rotational and inertial motion data flow.
Purpose: This study was to evaluate the effects of rehabilitation training using video game on improvement range of motion for upper -extremity, shoulder pain and stress in stroke patients with hemiplegia. Methods: The study utilized nonequivalent control group non-synchronized design. Participants are sampled from a group of people who are hospitalized in rehabilitation medicine ward at 'K' university hospital in 'S' city from January 1st 2011 to October 31th. Each 28members of control group and experimental group, total 56members were participated. One task is for 10minutes, and the video game for total 30minutes performed 5 times a week, for 3weeks. Data were analyzed by SPSS WIN 17.0. Results: The range of motion for upper-extremity in experimental group was significantly different from that in control group(shoulder flexion t=7.70, $p$ <.001, extension t=7.80, p<.001, abduction t=6.95, $p$ <.001, elbow flexion t=6.47, $p$ <.001). The shoulder pain score in experimental group was significantly different from that in control group(t=-14.58, $p$ <.001). The level of stress in experimental group was significantly different from that in control group(t=-4.89, $p$ <.001). Conclusion: The result proved that rehabilitation training using video game was an effective stroke patients to increase in range of motion for upper-extremity and decrease in the shoulder pain, stress.
We describe the development of an interactive aerobic training system using vision-based motion capture and multimedia technology. Unlike the traditional one-way aerobic training on TV, the proposed system allows the virtual trainer to observe and interact with the user in real-time. The system is composed of a web camera connected to a PC watching the user moves. First, the animated character on the screen makes a move, and then instructs the user to follow its movement. The system applies a robust statistical background subtraction method to extract a silhouette of the moving user from the captured video. Subsequently, principal body parts of the extracted silhouette are located using model-based approach. The motion of these body parts is then analyzed and compared with the motion of the animated character. The system provides audio feedback to the user according to the result of the motion comparison. All the animation and video processing run in real-time on a PC-based system with consumer-type camera. This proposed system is a good example of applying vision algorithms and multimedia technology for intelligent interactive home entertainment systems.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.10
/
pp.3668-3684
/
2021
Video action recognition is widely used in video surveillance, behavior detection, human-computer interaction, medically assisted diagnosis and motion analysis. However, video action recognition can be disturbed by many factors, such as background, illumination and so on. Two-stream convolutional neural network uses the video spatial and temporal models to train separately, and performs fusion at the output end. The multi segment Two-Stream convolutional neural network model trains temporal and spatial information from the video to extract their feature and fuse them, then determine the category of video action. Google Xception model and the transfer learning is adopted in this paper, and the Xception model which trained on ImageNet is used as the initial weight. It greatly overcomes the problem of model underfitting caused by insufficient video behavior dataset, and it can effectively reduce the influence of various factors in the video. This way also greatly improves the accuracy and reduces the training time. What's more, to make up for the shortage of dataset, the kinetics400 dataset was used for pre-training, which greatly improved the accuracy of the model. In this applied research, through continuous efforts, the expected goal is basically achieved, and according to the study and research, the design of the original dual-flow model is improved.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.2
/
pp.1118-1133
/
2017
Computer vision-based human activity recognition (HAR) has become very famous these days due to its applications in various fields such as smart home healthcare for elderly people. A video-based activity recognition system basically has many goals such as to react based on people's behavior that allows the systems to proactively assist them with their tasks. A novel approach is proposed in this work for depth video based human activity recognition using joint-based motion features of depth body shapes and Deep Belief Network (DBN). From depth video, different body parts of human activities are segmented first by means of a trained random forest. The motion features representing the magnitude and direction of each joint in next frame are extracted. Finally, the features are applied for training a DBN to be used for recognition later. The proposed HAR approach showed superior performance over conventional approaches on private and public datasets, indicating a prominent approach for practical applications in smartly controlled environments.
Nida, Nudrat;Yousaf, Muhammad Haroon;Irtaza, Aun;Velastin, Sergio A.
ETRI Journal
/
v.44
no.2
/
pp.327-338
/
2022
Classification models for human action recognition require robust features and large training sets for good generalization. However, data augmentation methods are employed for imbalanced training sets to achieve higher accuracy. These samples generated using data augmentation only reflect existing samples within the training set, their feature representations are less diverse and hence, contribute to less precise classification. This paper presents new data augmentation and action representation approaches to grow training sets. The proposed approach is based on two fundamental concepts: virtual video generation for augmentation and representation of the action videos through robust features. Virtual videos are generated from the motion history templates of action videos, which are convolved using a convolutional neural network, to generate deep features. Furthermore, by observing an objective function of the genetic algorithm, the spatiotemporal features of different samples are combined, to generate the representations of the virtual videos and then classified through an extreme learning machine classifier on MuHAVi-Uncut, iXMAS, and IAVID-1 datasets.
Zhang, Yikun;Yao, Rui;Jiang, Qingnan;Zhang, Changbin;Wang, Shi
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.3
/
pp.1434-1449
/
2019
Video object segmentation is a significant task in computer vision, but its performance is not very satisfactory. A method of video object segmentation using weakly temporal information is presented in this paper. Motivated by the phenomenon in reality that the motion of the object is a continuous and smooth process and the appearance of the object does not change much between adjacent frames in the video sequences, we use a feed-forward architecture with motion estimation to predict the mask of the current frame. We extend an additional mask channel for the previous frame segmentation result. The mask of the previous frame is treated as the input of the expanded channel after processing, and then we extract the temporal feature of the object and fuse it with other feature maps to generate the final mask. In addition, we introduce multi-mask guidance to improve the stability of the model. Moreover, we enhance segmentation performance by further training with the masks already obtained. Experiments show that our method achieves competitive results on DAVIS-2016 on single object segmentation compared to some state-of-the-art algorithms.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.5
/
pp.127-135
/
2010
In motion adaptive temporal noise reduction filtering used for reducing video noises, the strength of motion adaptive temporal filtering should be carefully controlled according to temporal movement. This paper presents a motion adaptive temporal filtering scheme based on least-square training. Each pixel is classified to a specific class code according to temporal movement, and then, an iterative least-square training method is applied for each class code to find optimal filtering coefficients. The iterative least-square training is an off-line procedure, and the trained filter coefficients are stored in a lookup table (LUT). In actual noise reduction filtering operation, after each pixel is classified by temporal movement, simple filtering operation is applied with the filter coefficients stored in the LUT according to the class code. Experiment results show that the proposed method efficiently reduces video noises without introducing blurring.
Objectives: The purpose of this study was to investigate the change in the posture of dental hygiene students and clinical dental hygienists when implementing dental scaling before and after posture correction training using the rapid upper limb assessment (RULA) method and 3D motion analysis. Methods: Thirty-two healthy volunteers performed dental scaling to remove artificial calculus on dental manikin. The movement and angle of the joints were verified by RULA and 3D motion analysis during the procedure. The subjects were also photographed for 1 minute during the procedure for 10 minutes while the calculus was removed. After the removal of the calculus, the subject and the instructor checked the video together. Posture correction training was conducted by the instructor so that the subject could perform the calculus removal operation in the correct posture. Artificial calculus of the adjacent teeth was then removed for the same period of time, and the change in posture was reviewed. Results: The total score of the posture change using RULA was $5.72{\pm}0.58$ before training and $4.31{\pm}0.10$ after training, showing a significant decrease after training (p<0.001), and upper arm, lower arm, wrist position, neck and waist position showed significant decrease after training. The three-dimensional motion analysis showed significant differences according to the criteria measured at all measurement sites except the left shoulder (p<0.05) Conclusions: It was confirmed through RULA and 3D motion analysis that postural correction training using calculus removal images was effective, and that correct postural education is essential to preventing musculoskeletal diseases caused by removal of calculus.
In real-world intelligent transportation systems, accuracy in vehicle license plate detection and recognition is considered quite critical. Many algorithms have been proposed for still images, but their accuracy on actual videos is not satisfactory. This stems from several problematic conditions in videos, such as vehicle motion blur, variety in viewpoints, outliers, and the lack of publicly available video datasets. In this study, we focus on these challenges and propose a license plate detection and recognition scheme for videos based on a temporal matching prior network. Specifically, to improve the robustness of detection and recognition accuracy in the presence of motion blur and outliers, forward and bidirectional matching priors between consecutive frames are properly combined with layer structures specifically designed for plate detection. We also built our own video dataset for the deep training of the proposed network. During network training, we perform data augmentation based on image rotation to increase robustness regarding the various viewpoints in videos.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.