• Title/Summary/Keyword: Motion Study

Search Result 9,788, Processing Time 0.04 seconds

Analysis and performance evaluation of the parallel typed for a vehicle driving simulator (병렬구조형 차량운전 모사장치의 성능평가 및 분석)

  • 박일경;박경균;김정하;이운성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1481-1484
    • /
    • 1997
  • The vehicle driving simulator expects vehicle motion with real-time simulation arise from driver's steering, accelerating, stopping and simulates motion of vehicl with visula, audio and washout algorithm. And it gives a vivid feeling to driver in reality. Vehicle driving simulator with vehicle integration control system is used for analysis of analysis of vehicle controllaility, steering capacity and safety in various pseudo environment alike. basides, it analyzeds vehicle safety factor dirver's reaction and promotes traffic safety without driver's own risks. The main proceduress of development of the vehicle driving simulator are classified by 3 parts. first the motion base system which can be generated by the motion queues, should be developed. Secondly, real-time vehicle software which can afford the vehicle dynamics, might be constructed. The third procedure is the integration of vehicle driing simulator which can be interconnected between visual systems with motion base. In this study, we are to study of the motion base for a vehicle driving simulator design and that of its real time control and using an extra gyro sensor and accelerometers to find a position and an orientatiion of the moving platform except for calculating forward kinematics. To drive the motion base, we use National Instruments corp's Labview software. Furthemore, we use analysis module for the vehicle motionand the washout algorithm module to consummate driving simulator, which can be driven by human in reality, so we are doing experimentally process about various vehicle motion conditon.

  • PDF

A Study of Sensing Locations for ECG Monitoring Clothing based on the Skin Change rate (체표 변화에 기반한 심전도 모니터링 의류의 센싱 위치 연구)

  • Cho, Hakyung;Cho, Sang woo
    • Fashion & Textile Research Journal
    • /
    • v.17 no.5
    • /
    • pp.844-853
    • /
    • 2015
  • Recently, according to change of lifestyle and increase of concerning in health, needs of the smart clothing based on the vital sign monitoring have increased. Along with this trend, smart clothing for ECG monitoring has been studied various way as textile electrode, clothing design and so on. Smart clothing for ECG monitoring can become a comfortable system which enables continuous vital sign monitoring in daily use. But, smart clothing for ECG monitoring has a weakness on artifact during motion. One of the motion artifact caused by shifting of the electrode position was affected skin change by motion. The aim of this study was to suggest electrode locations for clothing of ECG monitoring to reduce of motion artifacts. Therefore, change of skin surface during the movement were measured and analyzed in order to find location to minimize motion artifacts in ECG monitoring clothing by 3D motion capture. For the experiment, the subjects consisted of 5 males and 5 females in their 20' with average physique. As a result, the optimal location for ECG monitoring was deducted under the bust line and scapula which have least motion artifact. These locations were abstracted to be least affected by movement in this research.

Kinematic Analysis of the Linking Motion from the Swallow Skill to the Nakayama Skill on the Rings (링의 스왈로에서 나까야마 기술로의 연결 동작에 대한 운동학적 분석)

  • Chung, Nam-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.1-14
    • /
    • 2004
  • This study was intended to contribute to allowing athletes to raise a technical understanding of two motions of high difficulty such as the Swallow motion and the Nakayama motion and enhance their competitive power by analysing the kinematical factors required to link those two motions on the competitive scene on the rings for current national athletes. For this purpose, the game of the ring event was videotaped for male heavy gymnasts participating in the final elimination match of the 2004 Athens Olympic Games. This study attempted to select the performing motions of the final 1st-and 2nd-place athletes performing the linking motions from the Swallow motion and the Nakayama motion using the DLT(direct linear transformation) method. As a result, it arrived at the following conclusion : A1 properly performed the flexing and extending movements using the angular velocity of the segment and joint as the switching motion using the body at the time of linking the motion from the Swallow skill to the Nakayama skill. A2 was evaluated to perform the skill taking the form of depending on the force at the static state. Therefore, it is thought that A1 should take care of shaking at the time of using the elasticity of the body. It is thought that in case of A2 the proper use of the elasticity of the body take care of shaking at the switching motion while taking advantage of the force will contribute to his competitive power.

Study on Prediction and Control of Wind-Induced Heel Motion of Cruise Ship (바람 하중에 의한 크루즈선의 횡경사 예측 및 제어에 관한 연구)

  • Kim, Jae-Han;Kim, Yonghwan;Kim, Yong-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.206-216
    • /
    • 2013
  • The present study considers the prediction of wind-induced heel of cruise ship and its stabilization. Wind load in ocean exerts on the surface of superstructure of cruise ship, which causes the heel moment on the ship. The calculation of wind load starts from choosing wind speed profile, so that the logarithmic wind profile model is applied in this study. Heel moment by wind load is calculated by adopting approximate formulation and applied to the ship motion analysis in time domain. Motion stabilizers, such as stabilizing fin and U-tube tank, are considered to reduce the heel effect as well as excessive roll motion. From this study, it is expected that the present method can be applied to the prediction and stabilization of the heel motion of cruise ships.

Science High-School Students Understanding of Velocity & Acceleration and of the Motion of Bob When Tension is Removed in a Simple Pendulum

  • Kim, Young-Min;Jeong, Seong-Oh
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.5
    • /
    • pp.611-619
    • /
    • 2006
  • The aims of this study are to investigate science high school students' understanding of velocity and acceleration of a simple pendulum bob, and to investigate their understanding of inertia and gravitational force in the motion of a pendulum bob when the tension is removed. For the study, 46 students that had already studied the physical, concepts in simple pendulum were sampled from a science high school in a large city in Korea. For a comparison with general high school students' conceptions, 49 students were sampled from a general high school in the same city. The test tool for the investigation consisted of four drawing and simple-answering type questions developed by the authors. The outcomes of the study revealed that a substantial number of science high school students have misconceptions concerning acceleration in pendulum motion, and that many of them do not understand the relationship between force and acceleration. In addition, the results of the study showed that more than 30% of the students drew the path of a bob going along the tangential direction at the highest point of the motion, and approximately 20% of them drew the path of a bob falling straight down at the lowest point of the motion.

The Comparison of Motion Correction Methods in Myocardial Perfusion SPECT (심근관류 SPECT에서 움직임 보정 방법들의 비교)

  • Park, Jang-Won;Nam, Ki-Pyo;Lee, Hoon-Dong;Kim, Sung-Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.28-32
    • /
    • 2014
  • Purpose Patient motion during myocardial perfusion SPECT can produce images that show visual artifacts and perfusion defects. This artifacts and defects remain a significant source of unsatisfactory myocardial perfusion SPECT. Motion correction has been developed as a way to correct and detect the patient motion for reducing artifacts and defects, and each motion correction uses different algorithm. We corrected simulated motion patterns with several motion correction methods and compared those images. Materials and Methods Phantom study was performed. The anthropomorphic torso phantom was made with equal counts from patient's body and simulated defect was added in myocardium phantom for to observe the change in defect. Vertical motion was intentionally generated by moving phantom downward in a returning pattern and in a non-returning pattern throughout the acquisition. In addition, Lateral motion was generated by moving phantom upward in a returning pattern and in a non-returning pattern. The simulated motion patterns were detected and corrected similarly to no-motion pattern image and QPS score, after Motion Detection and Correction Method (MDC), stasis, Hopkins method were applied. Results In phantom study, Changes of perfusion defect were shown in the anterior wall by the simulated phantom motions, and inferior wall's defect was found in some situations. The changes derived from motion were corrected by motion correction methods, but Hopkins and Stasis method showed visual artifact, and this visual artifact did not affect to perfusion score. Conclusion It was confirmed that motion correction method is possible to reduce the motion artifact and artifactual perfusion defect, through the apply on the phantom tests. Motion Detection and Correction Method (MDC) performed better than other method with polar map image and perfusion score result.

  • PDF

The Comparative Analysis on the Kinematic Variables according to the Types of Stance in the Dead-lift of Snatch Events of Junior Weight Lifters (주니어 역도 선수 인상 종목의 Dead-lift 동작 시 스탠스유형에 따른 운동학적 변인 비교분석)

  • Chung, Nam-Ju;Kim, Jae-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.99-107
    • /
    • 2008
  • The aim of this study was to provide fundamental data in training to improve athletes' competitiveness through the comparative analysis of kinematic variables according to the types of stance. For this study, the subjects selected 4 Junior Weight lifters. Subjects performed two type(8-type and 11-type) Dead-lift and their performance was sampled at 60frame/sec. using four high-speed digital video cameras. After digitizing images from four cameras, the two-dimensional coordinates were used to produce three-dimensional coordinates of the 15 body segments(20 joint makers and 2 bar makers). And the results were as follows. 1. As for the time required for stances, 8-type motion was faster than 11-type motion. 2. As for the body-center shift in stances, 8-type motion was bigger than 11-type motion in back and forth motion shift, and 11-type motion was bigger than 8-type motion in right and left, up and down motion shift. 3. As for the speed of a body-center and a babel, 8-type motion was faster than 11-type motion. 4. As for the motion-trace of a babel in stances, 8-type motion was bigger than 11-type in back and forth, right and left motion and 11-type motion was bigger than 8-type in up and down motion. 5. As for the body-angles in stances, 8-type motion was bigger than 11-type in the stance angle, and 11-type motion is bigger than 8-type in the angles of a coxa, a knee and an ankle. As a result of the comparative analysis between 8-type and 11-type stance of Junior Weight lifters dead-lift, both were generally similar in variables, but 8-type motion was more stable than 11-type in aspects of time, speed, center shift, angle change.

Numerical study of Double Hydrofoil motions for thrust and propulsive efficiency (추력 및 효율 향상을 위한 Double Hydrofoil 움직임에 대한 수치해석 연구)

  • Kim, Sue-Jin;Han, Jun-Hee;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.59-70
    • /
    • 2014
  • The motion of birds and insects have been studied and applied to MAV(Micro Air Vehicle) and AUV(Autonomous Underwater Vehicle). Most of AUV research is focused on shape and motion of single hydrofoil. However, double hydrofoil system is mostly used in real physics. This system shows completely different hydrodynamic characteristic to single hydrofoil because of wake interaction. The goal of this study is define the trajectory of wake interaction in double hydrofoil system. Moreover, trust and efficiency of various combined motion will be demonstrated. Symmetry airfoil is used for analysis an hydrodynamic characteristic. Forward wing's plunging and pitching motion is fixed, hide wing's Heaving ratio, Pitch phase shift from forward plunging and Heaving shift is changed. This study provide necessary basic data of motion optimization for double hydrofoil system.

Design of Exo-Suit for Shoulder Muscle Strength Support (어깨 근력보조를 위한 엑소수트 설계)

  • Kwang-Woo Jeon;TaeHwan Kim;SeungWoo Kim;JungJun Kim;Hyun-Joon Chung
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.110-116
    • /
    • 2023
  • In this study describes the design of Exo-suit to assist those who work in unstructured positions. The present study aimed to analyze various types of work, especially those performed in unstructured postures by heavy industry workers. Based on the motion capture analysis results, an attempt was made to develop a shoulder muscle-assistive Exo-suit capable of assisting a wearer who is working using shoulder muscles. In the present study, as the first step of developing a shoulder muscle-assistive Exo-suit, different working scenarios were simulated, and the corresponding motion data were estimated using motion capture devices. The obtained motion data were reflected in the design of the Exo-suit. The main structure of the shoulder muscle-assistive Exo-suit was made of a carbon fiber-reinforced composite to obtain the weight reduction. The shoulder muscle assistive Exo-suit was designed to fully cover the range of motion for workers working in unstructured postures.

Exploration of Motion Prediction between Electroencephalography and Biomechanical Variables during Upright Standing Posture (바로서기 동작 시 EEG와 역학변인 간 동작 예측의 탐구)

  • Kyoung Seok Yoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.2
    • /
    • pp.71-80
    • /
    • 2024
  • Objective: This study aimed to explore the brain connectivity between brain and biomechanical variables by exploring motion recognition through FFT (fast fourier transform) analysis and AI (artificial intelligence) focusing on quiet standing movement patterns. Method: Participants included 12 young adult males, comprising university students (n=6) and elite gymnasts (n=6). The first experiment involved FFT of biomechanical signals (fCoP, fAJtorque and fEEG), and the second experiment explored the optimization of AI-based GRU (gated recurrent unit) using fEEG data. Results: Significant differences (p<.05) were observed in frequency bands and maximum power based on group and posture types in the first experiment. The second study improved motion prediction accuracy through GRU performance metrics derived from brain signals. Conclusion: This study delved into the movement pattern of upright standing posture through the analysis of bio-signals linking the cerebral cortex to motor performance, culminating in the attainment of motion recognition prediction performance.