• Title/Summary/Keyword: Motion Simulation

Search Result 3,097, Processing Time 0.026 seconds

3D SIMULATION OF FLAPPING FLAGS IN A UNIFORM FLOW BY THE IMMERSED BOUNDARY METHOD

  • Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.141-148
    • /
    • 2007
  • We present an immersed boundary (IB) method for 3D simulation of flappingflags in a uniform flow. The proposed formulation is manipulated on the basis of an efficient Navier-Stokes solver adopting the fractional step method and a staggered Cartesian grid system. A direct numerical method is developed to calculate the flag motion, with the elastic force treated implicitly. The fluid motion defined on an Eulerian grid and the flag motion defined on a Lagrangian grid are independently solved and the mass of flag is handled in a natural way. An additional momentum forcing is formulated from the flag motion equation in a way similar with the direct-forcing IB formulation and acts as the interaction force between the flag and ambient fluid. A series of numerical tests are performed and the present results are compared qualitatively and quantitatively with previous studies. The instantaneous flag motion is analyzed under different conditions and surrounding vortical structures are identified. The effects of physical parameters on the flapping frequency are studied.

  • PDF

Dynamics of the Macpherson Strut Motor-Vehicle Suspension System in Point and Joint Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1287-1296
    • /
    • 2003
  • In this paper the dynamic analysis of the Macpherson strut motor-vehicle suspension system is presented. The equations of motion are formulated using a two-step transformation. Initially, the equations of motion are derived for a dynamically equivalent constrained system of particles that replaces the rigid bodies by applying Newton's second law The equations of motion are then transformed to a reduced set in terms of the relative joint variables. Use of both Cartesian and joint variables produces an efficient set of equations without loss of generality For open chains, this process automatically eliminates all of the non-working constraint forces and leads to an efficient solution and integration of the equations of motion. For closed loops, suitable joints should be cut and few cut-joints constraint equations should be included for each closed chain. The chosen suspension includes open and closed loops with quarter-car model. The results of the simulation indicate the simplicity and generality of the dynamic formulation.

A Dynamic Modeling and Analysis for High-speed Walking of a Quadrupedal Robot (사각보행기의 고속 보행제어를 위한 동적 모델링 및 해석)

  • Kang, Sung-Chul;Yoo, Hong-Hee;Kim, Mun-Sang;Lee, Kyo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.756-768
    • /
    • 1997
  • In order to control a dynamic gait of quadrupedal walking robot, the equations of motion of the whole mechanism are required. In this research, the equations of motion are formulated analytically using Kane's dynamic approach. As a dynamic gait model, a trot gait has been adopted. The degree of freedom of whole mechanism could be reduced to 7 by idealizing the kinematic feature of the trot gait. Using the equations of motion formulated, the results of the redundant-joint torque analysis and the simulation of dynamic walking motion are presented.

Analog MOS circuits for motion detection based on correlation neural networks (상호연관 신경망에 기반을 둔 이동 검출을 위한 아날로그 집적회로)

  • ;;;Masahiro Ohtani;Hiroo Yonezu
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.149-152
    • /
    • 2000
  • We propose simple analog MOS circuits producing the one-dimensional compact motion-sensing circuits. In the proposed circuit, the optical flow is computed by a number of local motion sensors which are based on biological motion detectors. Mimicking the structure of biological motion detectors made the circuit structure quite simple, compared with conventional velocity sensing circuits. Extensive simulation results by a simulation program of integrated circuit emphasis (SPICE) indicated that the proposed circuits could compute local velocities of a moving light spot and showed direction selectivity for the moving spot

  • PDF

Graphics -Oriented CAD Development of Kinematic Analysis And Simwlation of An Automatic Feeding System By A Curvilinear inverse Cam. Part I: Motion Analysis of A Cam-Feeding System (곡선 캠을 이용한 자동 이송장치의 기구 해석 및 Simulation용 Graphics-Oriented CAD 개발 1)

  • 신중호;노창수;최영진;김상진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.264-268
    • /
    • 1987
  • This paper is concerned on kinematic analysis and simulation of an automatic feeding mechanism subjected by the motion of a curvilinear inverse can. The curvilinear cam is rotated by positioning a translating roller and the automatic feeding mechanism is moved to the sliding position by the motion of a campin fixed on the curvilinear cam. The curvilinear cam consists of two arcs of circles and two straight lines. The modular approach is used for the kinematic analysis of the feeding mechanism. As the first part of the paper for the motion simulation of the cam-feeding system, this paper discusses the algorithm to simulate the motion of the cam-feeding mechanism. The second part of the paper presents the state-of-art for the graphics-oriented CAD technique,

  • PDF

Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension (현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발)

  • Jung Hongkyu;Kim Sangsup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

Enhancing Motion Capture Data (모션 캡쳐 데이터 향상 기법)

  • 최광진
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.120-123
    • /
    • 1998
  • In animating an articulated entity with motion capture data, especially when the reconstruction is based on forward kinematics, there could be large discrepancies at the end effector. The small errors in joint angles tend to be amplified as the forward kinematics positioning progresses toward the end effector. In this paper, we present an algorithm that enhances the motion capture data to reduce positional errors at the end effector. The process is optimized so that the characteristics of the original joint angle data is preserved in the resulting motion. The frames at which the end-effector position needs to be accurate are designated as“keyframes”(e.g. starting and ending frames). In the algorithm, corrections by inverse kinematics are performed at sparse keyframes and they are interpolated with a cubic spline which produces a curve best approximating the measured joint angles. The experiment proves that our algorithm is a valuable tool to improve measured motion especially when end-effector trajectory contains a special goal.

  • PDF

Simulation of Secondary Motion of Piston Assemblies (피스톤 어셈블리의 2차 운동에 관한 시뮬레이션)

  • 오병근;조남효
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.231-243
    • /
    • 2000
  • This paper describes a simulation of secondary motion of piston assemblies using PISDYN by Ricardo. Motions of the piston, pin, rod and skirt are separately calculated, by integrating equations of motion for individual components and dynamic degrees of freedom. The effects of engine speed at full load and pin offsets on the piston assembly secondary motions, forces and friction were investigated in parametric study for 4-cylinder gasoline engine. Results show that lateral displacement and friction loss of the piston increase as a function of engine speed. The lateral motion of the piston is affected by the change in pin offset. The minimum friction loss for the condition of 4800rpm WOT occurs at a pin offset of 1.6mm.

  • PDF

ENHANCEMENT OF BOBSLEIGH SIMULATION REACTIVE FORCE

  • Ogino, Masatoshi;Taki, Tsuyoshi;Miyazaki, Shinya;Hasegawa, Junichi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.803-807
    • /
    • 2009
  • The bobsleigh is a winter sport which use a sled to slide down an ice-covered course. There is a big expectation for having a training environment and being able to train year round. At present, training is very limited due to the season or course facilities. A variety of VR (Virtual Reality) equipment has been developed in recent years, and it is beginning to spread. We have also made our contribution in bobsleigh simulation. The reactive force applied in our bobsleigh simulation is much smaller than that of a real bobsleigh. This paper proposes a method to enhance reactive force of bobsleigh simulation in real time. The reactive force is magnified instantly in the physically-based simulation. The Laplacian filter is applied to the sequence of reactive force, this technique is often used in the field of image processing. The simulation is comprised of four large scale surround screens and a 6-D.O.F. (Degree Of Freedom) motion system. We also conducted an experiment with several motion patterns to evaluate the effectiveness of enhancement. The experimental results proved useful in some cases.

  • PDF

Implementation of a tactic manager for the target motion analysis simulation of a submarine (잠수함의 표적기동분석 시뮬레이션을 위한 전술처리기의 구현)

  • Cho, Doo-Yeoun;Son, Myeong-Jo;Cha, Ju-Hwan;Lee, Kyu-Yeul;Kim, Tae-Wan;Ko, Yong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.65-74
    • /
    • 2007
  • A tactic manager which can change the behavior of a simulation model according to the tactic definition file has been studied and implemented. Based on the DEVS(discrete event system specification) formalism, we generated a simulation model which is equipped with the inter ace to the tactic manager. To demonstrate the effectiveness of the tactic manager, a target motion analysis simulation of the warfare between a submarine and a surface ship is simulated.

  • PDF