In this paper, a generalized version of the Motion Silhouette Image(MSI) called the Generic Motion Silhouette Image (GMSI) is proposed for gait recognition. The GMSI is a gray-level image and involves the spatiotemporal information of individual motion. The GMSI not only generalizes the MSI but also reflects a flexible feature of a gait sequence. Along with the GMSI, we use the Principal Component Analysis(PCA) to reduce the dimensionality of the GMSI and the Nearest Neighbor(NN) for classification. We apply the proposed feature to NLPR database and compare it with the conventional MSI. Experimental results show the effectiveness of the GMSI.
본 논문에서는 은닉 마르코프 모델을 바탕으로 하는 발걸음을 이용한 개인 식별 시스템을 제안한다. 개인의 발걸음은 연속적인 자세나 움직임의 집합으로 나타낼 수 있는데, 구조적으로 연속적인 움직임의 변화는 확률적인 특성을 가지고 있기 때문에 은닉 마르코프 모델을 이용하여 적절하게 모델링 할 수 있다. 개인의 발걸음은 N개의 이산적인 자세 간의 전이로 이루어졌다고 가정하였으며, 이를 계산하기 위해 MMSI라는 발걸음 특징 모델을 제안하였다. MMSI는 발걸음 인식에 중요한 역할을 하는 시공간적인 정보를 가지고 있는 그레이-스케일 영상이다. 실험 결과는 MMSI를 이용하여 은닉 마르코프 모델을 바탕으로 한 발걸음 인식 결과를 보여준다.
본 논문에서는 은닉 마르코프 모델을 바탕으로 하는 발걸음을 이용한 개인 식별 시스템을 제안한다. 개인의 발걸음은 연속적인 자세나 움직임의 집합으로 나타낼 수 있는데, 구조적으로 연속적인 움직임의 변화는 확률적인 특성을 가지고 있기 때문에 은닉 마르코프 모델을 이용하여 적절하게 모델링 할 수 있다. 개인의 발걸음은 N개의 이산적인 자세 간의 전이로 이루어졌다고 가정하였으며, 이를 계산하기 위해 MMSI라는 발걸음 특징 모델을 제안하였다. MMSI는 발걸음 인식에 중요한 역할을 하는 시공간적인 정보를 가지고 있는 그레이-스케일 영상이다. 실험 결과는 MMSI를 이용하여 은닉 마르코프 모델을 바탕으로 한 발걸음 인식 결과를 보여준다.
본 논문에서는 인간과 컴퓨터의 상호작용을 위해 연속된 입력영상에서 인체의 실루엣과 조인트를 자동추출하고 조인트를 추적함으로 객체를 추적하는 방법을 제안한다. 또한 추출된 조인트를 이용하여 인체를 매핑하여 사람의 동작을 재현한다. 이를 위해 인체의 치수를 이용하여 인체 움직임을 제어하는 14개의 조인트로 인체를 모델링한다. 제안방법은 단일카메라로 RGB 컬러로 입력되는 영상을 색상, 채도, 명암의 영상으로 변환한 후 차 영상기법을 이용하여 인체의 실루엣을 추출한다. 추출된 실루엣의 코너점과 인체 모델링 정보를 이용하여 조인트를 자동 검출한다. 객체의 움직임 추적은 전체 영상 중 조인트를 중심으로 블록매칭 기법을 이용하며 추출된 조인트의 위치정보를 이용하여 인체의 움직임을 매핑한다. 제안방법을 실험동영상에 적용한 결과 인체의 실루엣과 조인트를 자동 검출하며 추출된 조인트로 인체의 매핑이 효율적으로 이루어졌다. 또한 조인트의 추적이 매핑된 인체에 반영되어 인체의 움직임도 적절히 표현되었다.
In this paper, we present a CNN-based gesture recognition approach which reduces the memory burden of input data. Most of the neural network-based gesture recognition methods have used a sequence of frame images as input data, which cause a memory burden problem. We use a motion history image in order to define a meaningful gesture. The motion history image is a grayscale image into which the temporal motion information is collapsed by synthesizing silhouette images of a user during the period of one meaningful gesture. In this paper, we first summarize the previous traditional approaches and neural network-based approaches for gesture recognition. Then we explain the data preprocessing procedure for making the motion history image and the neural network architecture with three convolution layers for recognizing the meaningful gestures. In the experiments, we trained five types of gestures, namely those for charging power, shooting left, shooting right, kicking left, and kicking right. The accuracy of gesture recognition was measured by adjusting the number of filters in each layer in the proposed network. We use a grayscale image with 240 × 320 resolution which defines one meaningful gesture and achieved a gesture recognition accuracy of 98.24%.
본 논문은 영상 기반의 사람의 자세 추정에 대하여 다룬다. 특히 사람이 걷는 동안 카메라는 사람의 측면을 관찰하고 있다고 가정한다. 사람의 자세 추정의 문제는 인간-컴퓨터 상호 작용이나 지능형 감시 시스템을 위해 연구가 되는 분야이며, 본 논문에서는 일반적인 보행 상황에서 감시 시스템 또는 위치 추적, 자세 인식에 응용할 수 있는 알고리즘을 제시한다. 이 분야의 최근의 연구동향은 마코프 네트워크를 이용하여 신체 부분들의 위치나 움직임의 관계를 조건부 독립으로 가정하여 다루고 있다. 이러한 방법들의 경우 신체를 십여 개의 부분들로 모델링하고, 연결된 신체들의 관계를 고려하여 자세를 추정한다. 본 논문에서는 이러한 방법을 응용하여 모델을 단순화하고, 더 나아가 손쉽게 사람의 자세를 파악할 수 있는 방법을 제시한다. 이를 위해 신체 부분들이 독립적임을 가정하여 그 위치를 찾은 후에, 모션 캡쳐 데이터로부터 얻은 신체 부분들의 움직임 간의 관계를 고려하여 자세를 수정하여 주었다. 사람의 신체를 찾기 위해 edge matching을 이용하였으며, 그 과정에서 신체 부분의 edge 성분의 방향성을 강조하기 위해 Anisotropic Gaussian Filter를 사용하였다. 신체의 부분이 가려지는 경우, 모델의 silhouette을 이용하여 가려지는 부분에 대해 추가의 matching cost를 부여함으로써 occlusion 시에도 신체의 부분을 찾을 수 있도록 하였다.
사람의 동작을 믿을 수 있게 따라가는 것은 감시용 비디오나 사람과 컴퓨터간의 사용자 인터페이스 개발에 있어서 필수적이다. 이 논문은 모습 기반법(appearance-based method)과 모델 사용법을 혼용하여 사람을 추적하는 새로운 방법에 관한 논문이다. 하나의 비디오 입력이 화소 단위 및 물체 단위로 처리된다. 화소 단위의 처리에 있어서 개별 화소색을 분류하는 훈련방법으로, 가우스 혼합 모델(Gaussian mixture model)을 사용하였다. 물체 단위의 처리에 있어서 사람 몸에 대한 삼차원 모델링을 하고, 모델 몸체를 투사면(projection plane)에 투사시켰다. 투사된 몸체와 배경을 제외한 영상과 계산 기하 방법을 사용하여, 화소보다 작은 단위로 겹쳐지는 면적을 계산하였다. 우리의 방법은 정방향 기구학 (forward kinematics)을 사용하므로 역방향 기구학(inverse kinematics)을 사용하는 방법과 달리 계산 결함(singularity)을 갖지 않는다. 이 논문에서는 사람의 동작을 추적하기 위한 문제를 비선형 방정식 문제로 바꾸었다. 비선형 방정식의 비용 함수는 전경(foreground)의 영상 실루엣(silhouette)과 투사된 삼차원 모델 몸체의 실루엣의 겹쳐지는 면적이다. 화소 단위의 영상을 화소를 하나의 면적으로 계산함으로써, 겹쳐지는 면적에 대한 실수 단위의 계산은 계산 기하를 사용하였다. 이 논문의 방법은 다양한 사람 동작을 인식하기 위하여 사용되었다. 비디오에 나타나는 사람 동작 추적은 매우 우수하다.
Information that is acquired by adhered sensors on a body has been commonly used for the three-dimensional real-time motion capture algorithm. This paper describes realtime motion capture algorithm using computer vision. In a real-time image sequence, human body silhouette is extracted use a background subtraction between background image and the reference image. Then a human standing posture whether forward or backward is estimated by extraction of skin region in the silhoutte. After then, the principal axis is calculated in the torso and the face region is estimated on the principal axis. Feature points, which are essential condition to track the human gesture, are obtained ...
본 논문에서는 마커를 부착하기 어려운 소형도마뱀의 관절을 측정하기 위한 마커리스 모션 캡쳐 알고리즘을 제안하였다. 제안한 알고리즘에서는 먼저 스테레오 비젼과 같은 다시점 영상에서 적응적 이진화를 통해 도마뱀의 실루엣 영상을 획득하고 세선화를 수행하여 도마뱀의 뼈대 영상을 획득한다. 이후, 직교-대각 성분 제거 알고리즘 및 A* Search를 통해 머리와 꼬리점, 및 머리와 꼬리를 잇는 척추라인을 구한다. 어깨관절과 고관절의 좌표는 $3{\times}3$ 마스크를 이용하여 척추라인과 다리가 만나는 지점을 구하여 획득하고 모폴로지 닫기 영상을 통해 발바닥 좌표들을 검출한다. 최종적으로 각각의 다리에서 어깨관절 및 고관절 좌표와 발바닥 좌표를 잇는 직선과 해당 다리의 뼈대 좌표간의 직교 거리 비교를 통해 무릎과 팔꿈치 좌표를 구한다. 최종적으로 제안한 알고리즘으로 검출된 각 관절의 다시점 영상의 2차원 좌표들로부터 각 관절의 3차원 좌표를 복원한다. 실제 도마뱀을 촬영한 스테레오 영상에 제안된 알고리즘을 적용하여 2차원 주요 관절 지점 검출 및 3차원 복원을 수행하여 제안된 알고리즘의 성능을 검증하였다.
This paper discusses a skeleton feature extraction method for ubiquitous robot system. The skeleton features are used to analyze human motion and pose estimation. In different conventional feature extraction environment, the ubiquitous robot system requires more robust feature extraction method because it has internal vibration and low image quality. The new hybrid silhouette extraction method and adaptive skeleton model are proposed to overcome this constrained environment. The skin color is used to extract more sophisticated feature points. Finally, the experimental results show the superiority of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.