• 제목/요약/키워드: Motion Silhouette Image

검색결과 24건 처리시간 0.025초

움직임 실루엣 영상의 일반적인 표현 방식에 대한 연구 (A General Representation of Motion Silhouette Image: Generic Motion Silhouette Image(GMSI))

  • 홍성준;이희성;김은태
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.749-753
    • /
    • 2007
  • In this paper, a generalized version of the Motion Silhouette Image(MSI) called the Generic Motion Silhouette Image (GMSI) is proposed for gait recognition. The GMSI is a gray-level image and involves the spatiotemporal information of individual motion. The GMSI not only generalizes the MSI but also reflects a flexible feature of a gait sequence. Along with the GMSI, we use the Principal Component Analysis(PCA) to reduce the dimensionality of the GMSI and the Nearest Neighbor(NN) for classification. We apply the proposed feature to NLPR database and compare it with the conventional MSI. Experimental results show the effectiveness of the GMSI.

개선된 움직임 실루엣 영상을 이용한 발걸음 인식에 관한 연구 (Gait Recognition using Modified Motion Silhouette Image)

  • 홍성준;이희성;오경세;김은태
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.266-270
    • /
    • 2006
  • 본 논문에서는 은닉 마르코프 모델을 바탕으로 하는 발걸음을 이용한 개인 식별 시스템을 제안한다. 개인의 발걸음은 연속적인 자세나 움직임의 집합으로 나타낼 수 있는데, 구조적으로 연속적인 움직임의 변화는 확률적인 특성을 가지고 있기 때문에 은닉 마르코프 모델을 이용하여 적절하게 모델링 할 수 있다. 개인의 발걸음은 N개의 이산적인 자세 간의 전이로 이루어졌다고 가정하였으며, 이를 계산하기 위해 MMSI라는 발걸음 특징 모델을 제안하였다. MMSI는 발걸음 인식에 중요한 역할을 하는 시공간적인 정보를 가지고 있는 그레이-스케일 영상이다. 실험 결과는 MMSI를 이용하여 은닉 마르코프 모델을 바탕으로 한 발걸음 인식 결과를 보여준다.

개선된 움직임 실루엣 영상을 이용한 발걸음 인식에 관한 연구 (Gait Recognition using Modified Motion Silhouette Image)

  • 홍성준;이희성;오경세;김은태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.49-52
    • /
    • 2006
  • 본 논문에서는 은닉 마르코프 모델을 바탕으로 하는 발걸음을 이용한 개인 식별 시스템을 제안한다. 개인의 발걸음은 연속적인 자세나 움직임의 집합으로 나타낼 수 있는데, 구조적으로 연속적인 움직임의 변화는 확률적인 특성을 가지고 있기 때문에 은닉 마르코프 모델을 이용하여 적절하게 모델링 할 수 있다. 개인의 발걸음은 N개의 이산적인 자세 간의 전이로 이루어졌다고 가정하였으며, 이를 계산하기 위해 MMSI라는 발걸음 특징 모델을 제안하였다. MMSI는 발걸음 인식에 중요한 역할을 하는 시공간적인 정보를 가지고 있는 그레이-스케일 영상이다. 실험 결과는 MMSI를 이용하여 은닉 마르코프 모델을 바탕으로 한 발걸음 인식 결과를 보여준다.

  • PDF

인체 모델링을 이용한 인체의 조인트 자동 검출 및 인체 매핑 (Automatic Detecting of Joint of Human Body and Mapping of Human Body using Humanoid Modeling)

  • 곽내정;송특섭
    • 한국정보통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.851-859
    • /
    • 2011
  • 본 논문에서는 인간과 컴퓨터의 상호작용을 위해 연속된 입력영상에서 인체의 실루엣과 조인트를 자동추출하고 조인트를 추적함으로 객체를 추적하는 방법을 제안한다. 또한 추출된 조인트를 이용하여 인체를 매핑하여 사람의 동작을 재현한다. 이를 위해 인체의 치수를 이용하여 인체 움직임을 제어하는 14개의 조인트로 인체를 모델링한다. 제안방법은 단일카메라로 RGB 컬러로 입력되는 영상을 색상, 채도, 명암의 영상으로 변환한 후 차 영상기법을 이용하여 인체의 실루엣을 추출한다. 추출된 실루엣의 코너점과 인체 모델링 정보를 이용하여 조인트를 자동 검출한다. 객체의 움직임 추적은 전체 영상 중 조인트를 중심으로 블록매칭 기법을 이용하며 추출된 조인트의 위치정보를 이용하여 인체의 움직임을 매핑한다. 제안방법을 실험동영상에 적용한 결과 인체의 실루엣과 조인트를 자동 검출하며 추출된 조인트로 인체의 매핑이 효율적으로 이루어졌다. 또한 조인트의 추적이 매핑된 인체에 반영되어 인체의 움직임도 적절히 표현되었다.

CNN-based Gesture Recognition using Motion History Image

  • Koh, Youjin;Kim, Taewon;Hong, Min;Choi, Yoo-Joo
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.67-73
    • /
    • 2020
  • In this paper, we present a CNN-based gesture recognition approach which reduces the memory burden of input data. Most of the neural network-based gesture recognition methods have used a sequence of frame images as input data, which cause a memory burden problem. We use a motion history image in order to define a meaningful gesture. The motion history image is a grayscale image into which the temporal motion information is collapsed by synthesizing silhouette images of a user during the period of one meaningful gesture. In this paper, we first summarize the previous traditional approaches and neural network-based approaches for gesture recognition. Then we explain the data preprocessing procedure for making the motion history image and the neural network architecture with three convolution layers for recognizing the meaningful gestures. In the experiments, we trained five types of gestures, namely those for charging power, shooting left, shooting right, kicking left, and kicking right. The accuracy of gesture recognition was measured by adjusting the number of filters in each layer in the proposed network. We use a grayscale image with 240 × 320 resolution which defines one meaningful gesture and achieved a gesture recognition accuracy of 98.24%.

모델 기반의 보행자 신체 추적 기법 (Model-based Body Motion Tracking of a Walking Human)

  • 이우람;고한석
    • 대한전자공학회논문지SP
    • /
    • 제44권6호
    • /
    • pp.75-83
    • /
    • 2007
  • 본 논문은 영상 기반의 사람의 자세 추정에 대하여 다룬다. 특히 사람이 걷는 동안 카메라는 사람의 측면을 관찰하고 있다고 가정한다. 사람의 자세 추정의 문제는 인간-컴퓨터 상호 작용이나 지능형 감시 시스템을 위해 연구가 되는 분야이며, 본 논문에서는 일반적인 보행 상황에서 감시 시스템 또는 위치 추적, 자세 인식에 응용할 수 있는 알고리즘을 제시한다. 이 분야의 최근의 연구동향은 마코프 네트워크를 이용하여 신체 부분들의 위치나 움직임의 관계를 조건부 독립으로 가정하여 다루고 있다. 이러한 방법들의 경우 신체를 십여 개의 부분들로 모델링하고, 연결된 신체들의 관계를 고려하여 자세를 추정한다. 본 논문에서는 이러한 방법을 응용하여 모델을 단순화하고, 더 나아가 손쉽게 사람의 자세를 파악할 수 있는 방법을 제시한다. 이를 위해 신체 부분들이 독립적임을 가정하여 그 위치를 찾은 후에, 모션 캡쳐 데이터로부터 얻은 신체 부분들의 움직임 간의 관계를 고려하여 자세를 수정하여 주었다. 사람의 신체를 찾기 위해 edge matching을 이용하였으며, 그 과정에서 신체 부분의 edge 성분의 방향성을 강조하기 위해 Anisotropic Gaussian Filter를 사용하였다. 신체의 부분이 가려지는 경우, 모델의 silhouette을 이용하여 가려지는 부분에 대해 추가의 matching cost를 부여함으로써 occlusion 시에도 신체의 부분을 찾을 수 있도록 하였다.

하나의 비디오 입력을 위한 모습 기반법과 모델 사용법을 혼용한 사람 동작 추적법 (Human Motion Tracking by Combining View-based and Model-based Methods for Monocular Video Sequences)

  • 박지헌;박상호
    • 정보처리학회논문지B
    • /
    • 제10B권6호
    • /
    • pp.657-664
    • /
    • 2003
  • 사람의 동작을 믿을 수 있게 따라가는 것은 감시용 비디오나 사람과 컴퓨터간의 사용자 인터페이스 개발에 있어서 필수적이다. 이 논문은 모습 기반법(appearance-based method)과 모델 사용법을 혼용하여 사람을 추적하는 새로운 방법에 관한 논문이다. 하나의 비디오 입력이 화소 단위 및 물체 단위로 처리된다. 화소 단위의 처리에 있어서 개별 화소색을 분류하는 훈련방법으로, 가우스 혼합 모델(Gaussian mixture model)을 사용하였다. 물체 단위의 처리에 있어서 사람 몸에 대한 삼차원 모델링을 하고, 모델 몸체를 투사면(projection plane)에 투사시켰다. 투사된 몸체와 배경을 제외한 영상과 계산 기하 방법을 사용하여, 화소보다 작은 단위로 겹쳐지는 면적을 계산하였다. 우리의 방법은 정방향 기구학 (forward kinematics)을 사용하므로 역방향 기구학(inverse kinematics)을 사용하는 방법과 달리 계산 결함(singularity)을 갖지 않는다. 이 논문에서는 사람의 동작을 추적하기 위한 문제를 비선형 방정식 문제로 바꾸었다. 비선형 방정식의 비용 함수는 전경(foreground)의 영상 실루엣(silhouette)과 투사된 삼차원 모델 몸체의 실루엣의 겹쳐지는 면적이다. 화소 단위의 영상을 화소를 하나의 면적으로 계산함으로써, 겹쳐지는 면적에 대한 실수 단위의 계산은 계산 기하를 사용하였다. 이 논문의 방법은 다양한 사람 동작을 인식하기 위하여 사용되었다. 비디오에 나타나는 사람 동작 추적은 매우 우수하다.

Vision-Based Real-Time Motion Capture System

  • Kim, Tae-Ho;Jo, Kang-Hyun;Yoon, Yeo-Hong;Kang, Hyun-Duk;Kim, Dae-Nyeon;Kim, Se-Yoon;Lee, In-Ho;Park, Chang-Jun;Leem Nan-Hee;Kim, Sung-Een
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.171.5-171
    • /
    • 2001
  • Information that is acquired by adhered sensors on a body has been commonly used for the three-dimensional real-time motion capture algorithm. This paper describes realtime motion capture algorithm using computer vision. In a real-time image sequence, human body silhouette is extracted use a background subtraction between background image and the reference image. Then a human standing posture whether forward or backward is estimated by extraction of skin region in the silhoutte. After then, the principal axis is calculated in the torso and the face region is estimated on the principal axis. Feature points, which are essential condition to track the human gesture, are obtained ...

  • PDF

소형 도마뱀 운동 분석을 위한 마커리스 모션 캡쳐 알고리즘 (Markerless Motion Capture Algorithm for Lizard Biomimetics)

  • 김창회;김태원;신호철;이흥호
    • 전자공학회논문지
    • /
    • 제50권9호
    • /
    • pp.136-143
    • /
    • 2013
  • 본 논문에서는 마커를 부착하기 어려운 소형도마뱀의 관절을 측정하기 위한 마커리스 모션 캡쳐 알고리즘을 제안하였다. 제안한 알고리즘에서는 먼저 스테레오 비젼과 같은 다시점 영상에서 적응적 이진화를 통해 도마뱀의 실루엣 영상을 획득하고 세선화를 수행하여 도마뱀의 뼈대 영상을 획득한다. 이후, 직교-대각 성분 제거 알고리즘 및 A* Search를 통해 머리와 꼬리점, 및 머리와 꼬리를 잇는 척추라인을 구한다. 어깨관절과 고관절의 좌표는 $3{\times}3$ 마스크를 이용하여 척추라인과 다리가 만나는 지점을 구하여 획득하고 모폴로지 닫기 영상을 통해 발바닥 좌표들을 검출한다. 최종적으로 각각의 다리에서 어깨관절 및 고관절 좌표와 발바닥 좌표를 잇는 직선과 해당 다리의 뼈대 좌표간의 직교 거리 비교를 통해 무릎과 팔꿈치 좌표를 구한다. 최종적으로 제안한 알고리즘으로 검출된 각 관절의 다시점 영상의 2차원 좌표들로부터 각 관절의 3차원 좌표를 복원한다. 실제 도마뱀을 촬영한 스테레오 영상에 제안된 알고리즘을 적용하여 2차원 주요 관절 지점 검출 및 3차원 복원을 수행하여 제안된 알고리즘의 성능을 검증하였다.

유비쿼터스 로봇과 휴먼 인터액션을 위한 제스쳐 추출 (Gesture Extraction for Ubiquitous Robot-Human Interaction)

  • 김문환;주영훈;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.1062-1067
    • /
    • 2005
  • This paper discusses a skeleton feature extraction method for ubiquitous robot system. The skeleton features are used to analyze human motion and pose estimation. In different conventional feature extraction environment, the ubiquitous robot system requires more robust feature extraction method because it has internal vibration and low image quality. The new hybrid silhouette extraction method and adaptive skeleton model are proposed to overcome this constrained environment. The skin color is used to extract more sophisticated feature points. Finally, the experimental results show the superiority of the proposed method.