• Title/Summary/Keyword: Motion Sensing

Search Result 338, Processing Time 0.023 seconds

An Exploratory Study of Searching Human Body Segments for Motion Sensors of Smart Sportswear: Focusing on Rowing Motion (동작에 따른 피부변화 분석을 통한 동작센서 부착의 최적위치 탐색: 조정 동작을 중심으로)

  • Han, Bo-Ram;Park, Seonhyung;Cho, Hyun-Seung;Kang, Bokku;Kim, Jin-Sun;Lee, Joohyeon;Kim, Han Sung;Lee, Hae-Dong
    • Science of Emotion and Sensibility
    • /
    • v.20 no.1
    • /
    • pp.17-30
    • /
    • 2017
  • Lots of interdisciplinary studies for fusion of high technologes and the other areas of research had been tried in these days. In sports training area, high technologies like a vital sign sensor or an accelerometer were adopted as training tools to improve the performance of the sports players. The purpose of this study is finding the proper locations on the human body for attaching the motion sensors in order to develop a smart sportswear which could be helpful in training players. The rowing was selected as a subject sport as lots of movements of the joint on human body could be seen in rowing motions. The players of rowing could be devided into two weight divisions, the lightweight and the heavyweight. In this study, the change rates of distance between markers on human skin as the players moved were took on the back, the elbow, the hip and the knee area on human body by 3D motion capturing system. The distances between markers and the differences between the lightweight and heavyweight were analyzed. Finally, this study provided the guide lines for designing a motion sensing smart sportswear.

Estimation Method for Kinematic Constraint of Unknown Object by Active Sensing (미지 물체의 구속상태에 관한 실시간 추정방법)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.188-200
    • /
    • 2005
  • Control of a multi-fingered robotic hand is usually based on the theoretical analysis for kinematics and dynamics of fingers and of object. However, the implementation of such analyses to robotic hands is difficult because of errors and uncertainties in the real situations. This article presents the control method for estimating the kinematic constraint of an unknown object by active sensing. The experimental system has a two-fingered robotic hand suspended vertically for manipulation in the vertical plane. The fingers with three degrees-of-freedom are driven by wires directly connected to voice-coil motors without reduction gears. The fingers are equipped with three-axis force sensors and with dynamic tactile sensors that detect slippage between the fingertip surfaces and the object. In order to make an accurate estimation for the kinematic constraint of the unknown object, i.e. the constraint direction and the constraint center, four kinds of the active sensing and feedback control algorithm were developed: two position-based algorithms and two force-based algorithms. Furthermore, the compound and effective algorithm was also developed by combining two algorithms. Force sensors are mainly used to adapt errors and uncertainties encountered during the constraint estimation. Several experimental results involving the motion of lifting a finger off an unknown object are presented.

Real Time ECG Monitoring Through a Wearable Smart T-shirt

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.16-19
    • /
    • 2015
  • A wearable sensing ECG T-shirt for ubiquitous vital signs sensing is proposed. The sensor system consists of a signal processing board and capacitive sensing electrodes which together enable measurement of an electrocardiogram (ECG) on the human chest with minimal discomfort. The capacitive sensing method was employed to prevent direct ECG measurement on the skin and also to provide maximum convenience to the user. Also, low power integrated circuits (ICs) and passive electrodes were employed in this research to reduce the power consumption of the entire system. Small flexible electrodes were placed into cotton pockets and affixed to the interior of a worn tight NIKE Pro combat T-shirt. Appropriate signal conditioning and processing were implemented to remove motion artifacts. The entire system was portable and consumed low power compared to conventional ECG devices. The ECG signal obtained from a 24 yr. old male was comparable to that of an ECG simulator.

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

A Monitoring System for Sudden Infant Death Syndrome Prevention (유아 돌연사 증후군 방지를 위한 모니터링 시스템)

  • Jung, Kyung-Kwon;Hyun, Kyo-Hwan;Kim, Joo-Woong;Oh, Jung-Hoon;Joh, Hyung-Gook;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.481-484
    • /
    • 2008
  • Sudden infant death syndrome (SIDS) is the leading cause of unexplained death of an apparently healthy infant aged one month to one year. This paper presents a infant monitoring system which detects the movement of infants to prevent SIDS. The proposed system is composed of an movement sensing part and a motion detecting part. The movement sensing part uses a tri-axis accelerometer. The motion detecting part is based on the LVQ algorithm. The proposed monitoring system connects to an alarm for alerting a parent when an infant is in a predetermined position. We evaluated the performance of the monitoring system through experiments.

  • PDF

Development of Smart Tape Attachment Robot in the Cold Rolled Coil with 3D Non-Contact Recognition (3D 비접촉 인식을 이용한 냉연코일 테이프부착 로봇 개발)

  • Shin, Chan-Bai;Kim, Jin-Dae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1122-1129
    • /
    • 2009
  • Recently taping robot with smart recognition function have been studied in the coil manufacturing field. Due to the difficulty of 3D surface processing from the complicated working environment, it is not easy to accomplish smart tape attachment motion with non-contact sensor. To solve these problems the applicable surface recognition algorithm and a flexible sensing device has been recommended. In this research, the fusion method between 1D displacement and 3D laser scanner is applied for robust tape attachment about cold rolled coil. With these sensors we develop a two-step exploration and the smart algorithm for the awareness of non-aligned coil's information. In the proposed robot system for tape attachment, the problem is reduced to coil's radius searching with laser displacement sensor at first, and then position and orientation detection with 3D laser scanner. To get the movement at the robot's base frame, the hand-eye compensation between robot's end effector and sensing device should be also carried out respectively. In this paper, we examine the auto-coordinate transformation method in the calibration step for the real environment usage. From the experimental results, it was shown that the taping motion of robot had a robust under the non-aligned cold rolled coil.

A Design and Implementation of Natural User Interface System Using Kinect (키넥트를 사용한 NUI 설계 및 구현)

  • Lee, Sae-Bom;Jung, Il-Hong
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • As the use of computer has been popularized these days, an active research is in progress to make much more convenient and natural interface compared to the existing user interfaces such as keyboard or mouse. For this reason, there is an increasing interest toward Microsoft's motion sensing module called Kinect, which can perform hand motions and speech recognition system in order to realize communication between people. Kinect uses its built-in sensor to recognize the main joint movements and depth of the body. It can also provide a simple speech recognition through the built-in microphone. In this paper, the goal is to use Kinect's depth value data, skeleton tracking and labeling algorithm to recognize information about the extraction and movement of hand, and replace the role of existing peripherals using a virtual mouse, a virtual keyboard, and a speech recognition.

Development of the MVS (Muscle Volume Sensor) for Human-Machine Interface (인간-기계 인터페이스를 위한 근 부피 센서 개발)

  • Lim, Dong Hwan;Lee, Hee Don;Kim, Wan Soo;Han, Jung Soo;Han, Chang Soo;An, Jae Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.870-877
    • /
    • 2013
  • There has been much recent research interest in developing numerous kinds of human-machine interface. This field currently requires more accurate and reliable sensing systems to detect the intended human motion. Most conventional human-machine interface use electromyography (EMG) sensors to detect the intended motion. However, EMG sensors have a number of disadvantages and, as a consequence, the human-machine interface is difficult to use. This study describes a muscle volume sensor (MVS) that has been developed to measure variation in the outline of a muscle, for use as a human-machine interface. We developed an algorithm to calibrate the system, and the feasibility of using MVS for detecting muscular activity was demonstrated experimentally. We evaluated the performance of the MVS via isotonic contraction using the KIN-COM$^{(R)}$ equipment at torques of 5, 10, and 15 Nm.

Robot Simulator Considering Uncertainties in Motion and Sensing (이동 및 센싱 불확실성을 고려한 로봇 시뮬레이터)

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Tae-Gyun;Bae, Young-Chul
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.46-49
    • /
    • 2008
  • 본 논문은 이동 로봇의 이동 및 거리 센싱의 불확실성을 고려한 시뮬레이터 개발에 대해 소개한다. 이동 로봇은 구동기, 바닥의 불안정성, 바퀴 및 구동 기구의 불확실성, 그리고 기타 구조적으로 어려운 다양한 원인으로 동작 명령과 차이가 있게 이동한다. 또한 이동 로봇에 장착된 각종 센서는 센서 자체의 불안정성, 주변 환경의 불안정성등에 의하여 정확한 측정값을 출력하지 못한다. 이러한 이동 및 센서의 불안정성은 로봇의 자율 주행 알고리즘의 구현이 가장 큰 장애물이 되고 있다. 예측하기 어려운 불안정성을 고려하지 않은 알고리즘은 실제 환경에서 필연적으로 동작에 실패하여 크고 작은 사고를 일으킨다. 따라서 알고리즘의 검증을 위해 시뮬레이터가 각종 불확실성을 포함하여 로봇 동작이 실제에 유사하도록 하여야 한다. 본 연구에서는 이동 로봇의 이동과 센싱에 불확실성을 포함하도록한 시뮬레이터를 개발하였다. 다양한 센서들 중 이동 로봇의 위치 추정, 장애물 인식, 지도 작성등에 가장 기본적으로 사용되는 영역 센서를 대상으로 불확실성을 구현하였다. 개발된 시뮬레이터를 사용하여 알고리즘을 검증하는 경우와 불확실성을 고려하지 않은 시뮬레이터를 사용하여 알고리즘을 검증하는 경우를 비교하여, 제안된 시뮬레이터의 성능을 검증하였다.

  • PDF