• Title/Summary/Keyword: Motion Ratio

Search Result 1,359, Processing Time 0.039 seconds

Constrained One-Bit Transform based Motion Estimation using Extension of Matching Error Criterion (정합 오차 기준을 확장한 제한된 1비트 변환 알고리즘 기반의 움직임 예측)

  • Lee, Sanggu;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.730-737
    • /
    • 2013
  • In this paper, Constrained One-Bit Transform (C1BT) based motion estimation using extension of matching error criterion is proposed. C1BT based motion estimation algorithm exploiting Number of Non-Matching Points (NNMP) instead of Sum of Absolute Differences (SAD) that used in the Full Search Algorithm (FSA) facilitates hardware implementation and significantly reduces computational complexity. However, the accuracy of motion estimation is decreased. To improve inaccurate motion estimation, this algorithm based motion estimation extending matching error criterion of C1BT is proposed in this paper. Experimental results show that proposed algorithm has better performance compared with the conventional algorithm in terms of Peak-Signal-to-Noise-Ratio (PSNR).

A Study on the Acceleration Response Amplification Ratio of Buildings and Non-structural Components Considering Long-Period Ground Motions (장주기 지진동을 고려한 건축물 및 비구조요소의 가속도 응답 증폭비)

  • Oh, Sang Hoon;Kim, Ju Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Structures of high-rise buildings are less prone to earthquake damage. This is because the response acceleration of high-rise buildings appears to be small by generally occurring short-period ground motions. However, due to the increased construction volume of high-rise buildings and concerns about large earthquakes, long-period ground motions have begun to be recognized as a risk factor for high-rise buildings. Ground motion observed on each floor of the building is affected by the eigenmode of the building because the ground motion input to the building is amplified in the frequency range corresponding to the building's natural frequency. In addition, long-period components of ground motion are more easily transmitted to the floor or attached components of the building than short-period components. As such, high-rise buildings and non-structural components pose concerns about long-period ground motion. However, the criteria (ASCE 7-22) underestimate the acceleration response of buildings and non-structural components caused by long-period ground motion. Therefore, the characteristics of buildings' acceleration response amplification ratio and non-structural components were reviewed in this study through shake table tests considering long-period ground motions.

Seismic Energy Demand of Structures Depending on Ground Motion Characteristics and Structural Properties (지반 운동과 구조물 특성에 따른 구조물의 에너지 요구량)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.59-68
    • /
    • 2005
  • The energy-based seismic design method Is more rational in comparison with current seismic design code in that it can directly account for the effects of cumulative damage by earthquake and hysteretic behavior of the structure. However there are research results that don't reach a consensus depending on the ground motion characteristic and structural properties. For that reason in this study the influences of ground motion characteristics and structural properties on energy demands were evaluated using 100 earthquake ground motions recorded in different soil conditions, and the results obtained were compared with those of previous works. Results show that ductility ratios and sue conditions have significant influence on input energy. The results show that the ratio of hysteretic to input energy is considerably influenced by the ductility ratio, damping ratio, and strong motion duration, while the effect of site condition is insignificant.

Comparison of Activity and Use of Hip Abductor Muscle Group According to Range of Motion during the Clam Exercise (클램 운동 시 운동범위에 따른 엉덩관절 벌림근의 활성도와 사용 비교)

  • Choi, Yong-Gil;Lee, Sang-Yeol;Choi, Su-Hong;Yoon, Sung-Young;Kim, In-Gyun
    • PNF and Movement
    • /
    • v.20 no.3
    • /
    • pp.341-349
    • /
    • 2022
  • Purpose: The purpose of this study is to compare the muscle activity of the hip abductors and the ratio between the hip abductor muscle group according to the range of hip abduction during the clam exercise. Methods: This study was conducted on 18 healthy men in their aged 20 to 29 who had not been diagnosed with spine-related diseases. The subjects performed a clam exercise without rotation of the pelvis in a state of 60° hip flexion and 90° knee joint flexion in the side-lying position. Using Myomotion equipment and EMG, the muscle activity of the hip abductor muscles and the activity ratio between the hip abductor muscle group were measured during the clam exercise by dividing the range into initial, mid-range, and terminal sections. Repeated measures analysis of variants was employed to compare the activity and use of hip abductor muscles according to range of motion during the clam exercise. Results: Gluteus medius muscle activation was significantly increased in the comparison of muscle activity in the initial, mid-range, and terminal sections of hip abduction. Tensor fasciae latae muscle activation was significantly increased in the comparison of muscle activity in all range of motion sections as well. The gluteus medius-tensor fasciae latae muscle activation ratio was significantly increased in the terminal section compared to the initial section. Conclusion: The gluteus medius and tensor fasciae latae had higher muscle activities as they approached the terminal section during the clam exercise, and the hip abduction activity ratio of the gluteus medius and tensor fasciae latae was higher as the range of motion approached the terminal section.

Heat transfer characteristics by an oscillating flow in a tube with a regenerator (재생기가 포함된 원관내 왕복유동에 의한 열전달 특성)

  • Lee, Geon-Tae;Gang, Byeong-Ha;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.428-439
    • /
    • 1998
  • Fluid flow and heat transfer have been numerically investigated for an oscillating flow in a tube with a regenerator. The regenerator is placed between hot and cold spaces which are heated and cooled at uniform temperature. An oscillating flow is generated by the piston motion at both ends of a tube. The time dependent, two-dimensional Navier-Stokes equations and energy equation are solved by using the finite-volume and moving grid method. The regenerator is adopted as Brinkmann-Forchheimer extended Darcy model. Numerical results are obtained for the flow and temperature fields, and described the effects of the oscillating frequency and amplitude ratio by the piston motion as well as the aspect ratio. The numerical results obtained indicate that the heat transfer between the tube wall and oscillating flow is increased as the oscillating frequency, amplitude ratio and the aspect ratio are increased.

Motion Control of an Omnidirectional Mobile Robot with Steerable Omnidirectional Wheels

  • Byun, Kyung-Seok;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.37.6-37
    • /
    • 2002
  • Omnidirectional mobile robots are capable of arbitrary motion in an arbitrary direction without changing the direction of wheels, because they can perform 3 degree-of-freedom (DOF) motion on a 2-dimensional plane. In this research, a new class of an omnidirectional mobile robot is proposed. Since it has synchronously steerable omnidirectional wheels, it is called an omnidirectional mobile robot with steerable omnidirectional wheels (OMR-SOW). It has 3 DOFs in motion and one DOF in steering. One steering DOF can function as a continuously variable transmission (CVT). CVT of the OMR-SOW increases the range of velocity ratio from the wheel velocities to robot velocity, which may improve...

  • PDF

MPEG-4 to H.264 Transcoding (MPEG-4에서 H.264로 트랜스코딩)

  • 이성선;이영렬
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.275-282
    • /
    • 2004
  • In this paper, a transcoding method that transforms MPEG-4 video bitstream coded in 30 Hz frame rate into H.264 video bitstream of 15 Hz frame rate is proposed. The block modes and motion vectors in MPEG-4 is utilized in H.264 for block mode conversion and motion vector (MV) interpolation methods. The proposed three types of MV interpolation method can be used without performing full motion estimation in H.264. The proposed transcoder reduces computation amount for full motion estimation in H.264 and provides good quality of H.264 video at low bitrates. In experimental results, the proposed methods achieves 3.2-4 times improvement in computational complexity compared to the cascaded pixel-domain transcoding, while the PSNR (peak signal to noise ratio) is degraded with 0.2-0.9dB depending on video sizes.

A Motion Vector Re-Estimation Algorithm for Image Downscaling in Discrete Cosine Transform Domain (이산여현변환 공간에서의 영상 축소를 위한 움직임 벡터 재추정)

  • Kim, Woong-Hee;Oh, Seung-Kyun;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.494-503
    • /
    • 2002
  • A motion vector re-estimation algorithm for image downscaling in discrete consine transform domain is presented. Kernel functions are difined using SAD (Aum of Absolute Difference) and edge information of a macroblock. The proposed method uses these kernel functions to re-estimate a new motion vector of the downscaled image. The motion vectors from the incoming bitstream of transcoder are reused to reduce computation burden of the block-matching motion estimation, and we also reuse the given motion vectors. Several experiments in this paper show that the computation efficiency and the PSNR (Peak Signal to Noise Ratio) and better than the previous methods.

Seismic performance of R/C structures under vertical ground motion

  • Bas, Selcuk;Lee, Jong-Han;Sevinc, Mukadder;Kalkan, Ilker
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.369-380
    • /
    • 2017
  • The effects of the vertical component of a ground motion on the earthquake performances of semi-ductile high-rise R/C structures were investigated in the present study. Linear and non-linear time-history analyses were conducted on an existing in-service R/C building for the loading scenarios including and excluding the vertical component of the ground motion. The ratio of the vertical peak acceleration to the horizontal peak acceleration (V/H) of the ground motion was adopted as the main parameter of the study. Three different near-source earthquake records with varying V/H ratio were used in the analyses. The linear time-history analyses indicated that the incorporation of the vertical component of a ground motion into analyses greatly influences the vertical deflections of a structure and the overturning moments at its base. The lateral deflections, the angles of rotation and the base shear forces were influenced to a lesser extent. Considering the key indicators of vertical deflection and overturning moments determined from the linear time-history analysis, the non-linear analyses revealed that the changes in the forces and deformations of the structure with the inclusion of the vertical ground motion are resisted by the shear-walls. The performances and damage states of the beams were not affected by the vertical ground motion. The vertical ground motion component of earthquakes is markedly concluded to be considered for design and damage estimation of the vertical load-bearing elements of the shear-walls and columns.

Development of Quantitative Diagnostic Technique for Low-Back Pain Patients via Three Dimensional Dynamic Motion Analysis (3차원 동작분석에 의한 요통환자의 정량적 진단기법 개발에 관한 연구)

  • Kim, Jeong-Ryong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.11-23
    • /
    • 1998
  • Dynamic motion difference between normal subjects and low-back pain (LBP) patients has been investigated in terms of kinematic variables such as range of motion, velocity and acceleration of the back and hip. Ten healthy subjects and ten LBP patients were recruited in this study. Electro-goniometer such as Lumbar Motion Monitor and Hip Monitor have been used for quantitative measurement of the trunk motion during repetitive flexion and extension for ten seconds. Results indicated that the velocity and acceleration of the back and hip were important parameters to quantitatively identify LBP patients. The consistency of cyclic trunk motion and the relationship between the back and hip were measured in terms of Variance Ratio and Phase Angle in order to accurately assess the motion characteristics of LBP patients. In particular, the hip motion has been proven to be a very important factor in describing the kinematics of damaged lower back. The functional evaluation technique suggested in this study will be a tool to assist physicians for an accurate diagnosis and timely rehabilitation along with current image diagnosis techniques.

  • PDF