• Title/Summary/Keyword: Motion Estimation / Compensation

Search Result 174, Processing Time 0.025 seconds

Novel Frame Interpolation Method for High Image Quality LCDs

  • Itoh, Goh;Mishima, Nao
    • Journal of Information Display
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • We developed a novel frame interpolation method to interpolate a frame between two successive original frames. Using this method, we are able to apply a double-rate driving method instead of an impulse driving method where a black frame is inserted between two successive original frames. The double-rate driving method enables amelioration of the motion blur of LCDs caused by the characteristics of human vision without reducing the luminosity of the whole screen. The image quality of the double-rate driving method was also found to be better than that of an impulse driving method using our motion picture simulator and an actual panel. Our initial model of our frame interpolation method consists of motion estimation with a maximum matching pixel count estimation function, an area segmentation technique, and motion compensation with variable segmentation threshold. Although salt and pepper noise remained in a portion of an object mainly due to inaccuracy of motion estimation, we verified the validity of our method and the possibility of improvement in hold-type motion blurring.

Fast motion estimation and mode decision for variable block sizes motion compensation in H.264 (H.264의 가변 블록 움직임 보상을 위한 고속 움직임 벡터 탐색 및 모드 결정법)

  • 이제윤;최웅일;전병우;석민수
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.275-285
    • /
    • 2003
  • The now video coding standard H.264 employs variable block size motion compensation, multiple references, and quarter-pel motion vector accuracy. These techniques are key features to accomplish higher coding gain, however, at the same time main factors that increase overall computational complexity. Therefore, in order to apply H.264 to many applications, key techniques are requested to improve their speed. For this reason, we propose a fast motion estimation which is suited for variable block size motion communication. In addition, we propose a fast mode decision method to choose the best mode at early stage. Experimental results show the reduction of the number of SAT SATD calculations by a factor of 4.5 and 2.6 times respectively, when we compare the proposed fast motion estimation and the conventional MVFAS $T^{[8-10]}$. Besides, the number of RDcost computations is reduced by about 45%. Therefore, the proposed methods reduces significantly its computational complexity without noticeable coding loss.

Motion Blur reduction based on Motion Compensation

  • Park, Jae-Hyeung;Kim, Yun-Jae;Park, Min-Kyu;Amino, Tadashi;Oh, Jae-Ho;Kim, Nam-Deog;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.413-416
    • /
    • 2007
  • Motion-estimation/motion-compensation (ME/MC) provides superior motion picture quality but its huge computation load results in high cost. Impulsive driving is a cost-effective solution but it suffers from large flicker and brightness loss. Motion compensated impulsive driving technology has been developed to achieve high motion picture quality in a cost-effective implementation by combining ME/MC and impulsive driving. The key idea is to apply ME/MC or impulsive driving selectively according to the motion vector distribution of the incoming image sequence. In this paper, the description of the algorithm and the experimental results are provided.

  • PDF

Half-pel Accuracy Motion Estimation Algorithm using Selective Interpolation in the Wavelet Domain (웨이블릿 영역에서의 선택적인 보간에 의한 반화소 단위 움직임 추정)

  • 이경환;정영훈;황희철
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.40-47
    • /
    • 2003
  • In this paper, we propose a new method for reducing the computational overhead of fine-to-coarse multi-resolution motion estimation (MRME) at the finest resolution level by searching for the region to consider motion vectors of the coarsest resolution subband. At this time, if half-pel accuracy motion estimation (HPAME) is used in the baseband where influence a lot of effect to the reconstructed image, we can have the motion vector exactly But, this method causes to higher computational overhead. So we suggest the method to the computational overhead by using selective interpolation. Experimental results show that the proposed algorithm gives better results than the traditional algorithms from image quality.

  • PDF

An Improved Three-Step Search Algorithm for Block Motion Estimation

  • Hong, Won-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1604-1608
    • /
    • 2000
  • The three-step search (TSS) algorithm for block motion estimation has been widely used in real-time video coding due to the simplicity of the algorithm significant reduction of computationl cost and good performance. In this paper an improved three-step search (ITS) algorithm is proposed to improve the performance of the TSS algorithm. Simulation results show that in terms of motion compensation errors the proposed ITSS outperforms some popular fast search algorithms while it has the lower computational complexity.

  • PDF

Highly Integrated Low-Power Motion Estimation Processor for Mobile Video Coding Applications (이동통신 향 동영상압축을 위한 고집적 저전력 움직임 추정기)

  • Park Hyun Sang
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.77-82
    • /
    • 2005
  • We propose a highly Integrated motion estimation processor (MEP) for efficient video compression in an SoC platform. When compressing video by the standards like MPEG-4 and H.263, the macroblock related functions motion compensation. mode decision, motion vector prediction, and motion vector difference calculation require the frequent intervention of MCU. Thus the proposed MEP incorporates those functions with the motion estimation capability to reduce the number of interrupts to MCU, which can lead to a highly efficient SoC system. For low-power consumption, the proposed MEP can prevent the temporally static area from motion estimation or can skip the half-pel motion estimation for those macroblocks whose modes are decided as INTRA.

Euler Angle-Based Global Motion Estimation Model for Digital Image Stabilization (디지털 영상 안정화를 위한 오일러각 기반 전역 움직임 추정 모델)

  • Kwak, Hwy-Kuen;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1053-1059
    • /
    • 2010
  • This paper treats the DIS (Digital Image Stabilization) problem subject to base motions such as translation, rotation and zoom. For the local motion estimation from a raw image, the Harris corner detection algorithm is exploited to extract feature points, and comparing those of consecutive images, the zoom ratio (scale factor) is computed. For the global motion estimation, an equivalent model is derived to account for a 3-dimensional composite motion from which the center point and Euler angle can be determined. Finally, the motion compensation follows. To show the effectiveness of the present DIS scheme, experimental results for synthetic images are illustrated.

New De-interlacing Algorithm Combining Edge Dependent Interpolation and Global Motion Compensation Based on Horizontal and Vertical Patterns (수평, 수직 패턴에 기반 한 경계 방향 보간과 전역 움직임 보상을 고려한 새로운 순차주사화 알고리즘)

  • 박민규;이태윤;강문기
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-53
    • /
    • 2004
  • In this paper, we propose a robust deinterlacing algorithm which combines edge dependent interpolation (EDI) and global motion compensation (GMC). Generally, EDI algorithm shows a visually better performance than any other deinterlacing algorithm using one field. However, due to the restriction of information in one field, a high duality progressive image from Interlaced sources cannot be acquired by intrafield methods. On the contrary, since algorithms based on motion compensation make use of not only spatial information but also temporal information, they yield better results than those of using one field. However, performance of algorithms based on motion compensation depends on the performance of motion estimation. Hence, the proposed algorithm makes use of mixing process of EDI and GMC. In order to obtain the best result, an adaptive thresholding algorithm for detecting the failure of GMC is proposed. Experimental results indicate that the proposed algorithm outperforms the conventional approaches with respect to both objective and subjective criteria.

Motion Linearity-based Frame Rate Up Conversion Method (선형 움직임 기반 프레임률 향상 기법)

  • Kim, Donghyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.734-740
    • /
    • 2017
  • A frame rate up-conversion scheme is needed when moving pictures with a low frame rate is played on appliances with a high frame rate. Frame rate up-conversion methods interpolate the frame with two consecutive frames of the original source. This can be divided into the frame repetition method and motion estimation-based the frame interpolation one. Frame repetition has very low complexity, but it can yield jerky artifacts. The interpolation method based on a motion estimation and compensation can be divided into pixel or block interpolation methods. In the case of pixel interpolation, the interpolated frame was classified into four areas, which were interpolated using different methods. The block interpolation method has relatively low complexity, but it can yield blocking artifacts. The proposed method is the frame rate up-conversion method based on a block motion estimation and compensation using the linearity of motion. This method uses two previous frames and one next frame for motion estimation and compensation. The simulation results show that the proposed algorithm effectively enhances the objective quality, particularly in a high resolution image. In addition, the proposed method has similar or higher subjective quality than other conventional approaches.

Fast Motion Estimation using Adaptive Search Region Prediction (적응적 탐색 영역 예측을 이용한 고속 움직임 추정)

  • Ryu, Kwon-Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1187-1192
    • /
    • 2008
  • This paper proposes a fast motion estimation using an adaptive search region and a new three step search. The proposed method improved in the quality of motion compensation image as $0.43dB{\sim}2.19dB$, according as it predict motion of current block from motion vector of neigher blocks, and adaptively set up search region using predicted motion information. We show that the proposed method applied a new three step search pattern is able to fast motion estimation, according as it reduce computational complexity per blocks as $1.3%{\sim}1.9%$ than conventional method.