• Title/Summary/Keyword: Motion Correction

Search Result 383, Processing Time 0.017 seconds

Evaluation of the usefulness of prone position for reducing the image distortion due to respiration in PET/CT (PET/CT 검사 시 호흡에 따른 영상 왜곡 감소를 위한 엎드린 자세의 유용성 평가)

  • Lee, Han Wool;Kim, Jung Yul;Choi, Yong Hoon;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.59-63
    • /
    • 2019
  • Purpose The motion due to respiration of patients undergoing PET/CT is a cause of artifacts in image and registration error between PET and CT images. The degree of displacement and distortion for tumor, which affects the measurement of Standard Uptake Value (SUV) and lesion volume, is especially higher for tumors that is small or located at the base of lungs. The purpose of this study was to evaluate the usefulness of prone position in the correction of image distortion due to respiration of patients in PET/CT. Materials and Methods The imaging equipment used in this study was PET/CT Discovery 600 (GE Healthcare, MI, USA). 20 patients whose lesions were identified in the middle and lower lungs from May to August 2018 were enrolled in this study. After acquiring whole body image in the supine position, additional images of the lesion area were obtained in the prone position with the same conditions. SUVmax, SUVmean, and volume of the lesion were measured for each image, and the displacement of the lesion on PET and CT images were measured, compared, and analyzed. Results The SUVmax, SUVmean, and volume, and displacement of the lesion were $4.72{\pm}2.04$, $3.10{\pm}1.38$, $4.68{\pm}3.20$, and $4.64{\pm}1.88$, respectively for image acquired in the supine position and $5.89{\pm}2.42$, $3.97{\pm}1.65$, $2.13{\pm}1.09$, and $2.24{\pm}0.84$, respectively for image acquired in the prone position, indicating that, for all the lesions imaged, SUVmax and SUVmean were higher and volume and displacement were smaller in the images acquired in prone position compared to those acquired in supine one(p<0.05). Conclusion These results showed that the prone position PET/CT imaging improves the quality of the image by increasing the SUV of the lesion and reducing the respiratory artifacts caused by registration error between PET and CT images. It is considered that the PET/CT imaging in the prone position is helpful in the diagnosis of the disease as an economical and efficient methods that correct registration error for the lesions in basal lung and reduce artifacts.

Is It Appropriate to Insert Pedicle Screws at an Infected Vertebral Body in the Treatment of Lumbar Pyogenic Spondylodiscitis? (요추부 화농성 척추염의 수술적 치료: 이환된 추체에 척추경 나사 고정이 타당한가?)

  • Na, Hwa-Yeop;Jung, Yu-Hun;Lee, Joo-Young;Kim, Hyung-Do
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.5
    • /
    • pp.419-426
    • /
    • 2021
  • Purpose: In the surgical treatment of pyogenic lumbar spondylodiscitis, screw insertion at the affected vertebra has been avoided because of biofilm formation, and the risk of infection recurrence. The authors analyzed the success rate of infection treatment while minimizing the number of instrumented segments by inserting pedicle screws into the affected vertebrae. Therefore, this study examined the usefulness of this technique. Materials and Methods: From January 2000 to June 2018, among patients with pyogenic lumbar spondylodiscitis treated surgically, group A consisted of patients with pedicle screws inserted directly at the affected vertebrae (28 cases), and group B underwent fusion by inserting screws at the adjacent normal vertebrae due to bone destruction of the affected vertebral pedicle (20 cases). The classified clinical results were analyzed retrospectively. All patients were treated via the posterior-only approach, so the affected disc and sequestrum were removed. Posterior interbody fusion was performed with an autogenous strut bone graft, and the segments were then stabilized with pedicle screw systems. The hospitalization period, operation time, amount of blood loss, EQ-5D index, duration of intravenous antibiotics, and the clinical and radiological results were analyzed. Results: In group A, the number of instrumented segments, operation time, blood loss, and EQ-5D index at one month postoperatively showed significant improvement compared to group B. There were no significant differences in the duration of antibiotic use, hospitalization, radiological bone union time, sagittal angle correction rate, and recurrence rate. Conclusion: Minimal segmental fixation, in which pedicle screws were inserted directly into the affected vertebrae through the posterior approach, reduced the surgery time and blood loss, preserved the lumbar motion by minimizing fixed segments and showed rapid recovery without spreading or recurrence of infection. Therefore, this procedure recommended for the surgical treatment of lumbar pyogenic spondyodiscitis.

A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET (N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구)

  • Kim, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Ju, Hee-Kyung;Kim, Yong-Jin;Kim, Byung-Tae;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • Regional myocardial blood flow (rMBF) can be noninvasively quantified using N-13 ammonia and dynamic positron emission tomography (PET). The quantitative accuracy of the rMBF values, however, is affected by the distortion of myocardial PET images caused by finite PET image resolution and cardiac motion. Although different methods have been developed to correct the distortion typically classified as partial volume effect and spillover, the methods are too complex to employ in a routine clinical environment. We have developed a refined method incorporating a geometric model of the volume representation of a region-of-interest (ROI) into the two-compartment N-13 ammonia model. In the refined model, partial volume effect and spillover are conveniently corrected by an additional parameter in the mathematical model. To examine the accuracy of this approach, studies were performed in 9 coronary artery disease patients. Dynamic transaxial images (16 frames) were acquired with a GE $Advance^{TM}$ PET scanner simultaneous with intravenous injection of 20 mCi N-13 ammonia. rMBF was examined at rest and during pharmacologically (dipyridamole) induced coronary hyperemia. Three sectorial myocardium (septum, anterior wall and lateral wall) and blood pool time-activity curves were generated using dynamic images from manually drawn ROIs. The accuracy of rMBF values estimated by the refined method was examined by comparing to the values estimated using the conventional two-compartment model without partial volume effect correction rMBF values obtained by the refined method linearly correlated with rMBF values obtained by the conventional method (108 myocardial segments, correlation coefficient (r)=0.88). Additionally, underestimated rMBF values by the conventional method due to partial volume effect were corrected by theoretically predicted amount in the refined method (slope(m)=1.57). Spillover fraction estimated by the two methods agreed well (r=1.00, m=0.98). In conclusion, accurate rMBF values can be efficiently quantified by the refined method incorporating myocardium geometric information into the two-compartment model using N-13 ammonia and PET.

  • PDF