• 제목/요약/키워드: Motion Correction

검색결과 383건 처리시간 0.027초

주변 블록의 움직임 벡터 빈도수에 기반한 움직임 벡터 교정을 적용한 프레임 율 변환 기법 (Frame Rate Up-Conversion Using the Motion Vector Correction based on Motion Vector Frequency of Neighboring blocks)

  • 이정훈;한동일
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.259-260
    • /
    • 2007
  • In this paper, a frame rate up-conversion algorithm using the motion vector frequency of neighboring blocks to reduce the block artifacts caused by failure of conventional motion estimation based on block matching algorithm is proposed. Experimental results show good performance of the proposed scheme with significant reduction of the erroneous motion vectors and block artifacts.

  • PDF

실시간 회전영상 안정화를 위한 회전중심 및 회전각도 추정 방법 (Estimation of Rotation Center and Rotation Angle for Real-time Image Stabilization of Roll Axis.)

  • 조재수;김도종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.153-155
    • /
    • 2004
  • This paper proposes a real-time approach on the rotational motion estimation and correction for the roll stabilization of the sight system. This method first estimates a rotation center by the least-mean square algorithm based on the motion vectors of some feature points. And, then, a rotation angle is searched for a best matching block between a reference block image and seccessive input images using MPC(maximum pixel count) matching criterion. Finally, motion correction is performed by the bilinear interpolation technique. Various computer simulations show that the estimation performance is good and the proposed algorithm is a real-time implementable one to the TMS320C6415(500MHz) DSP.

  • PDF

프레임동영상의 근실시간 센서모델 보정시스템 개발 및 성능분석 (Development and Performance Analysis of a Near Real-Time Sensor Model Correction System for Frame Motion Imagery)

  • 권혁태;고진우;김상희;박세형
    • 한국군사과학기술학회지
    • /
    • 제21권3호
    • /
    • pp.315-322
    • /
    • 2018
  • Due to the increasing demand for more rapid, precise and accurate geolocation of the targets on video frames from UAVs, an efficient and timely method for correcting sensor models of motion imagery is required. In this paper, we propose a method to adjust or correct sensor models of motion imagery frames using space resection via image matching with reference data. The proposed method adopts image matching between the motion imagery frames and the reference frames which are synthesized from reference data. Ground or reference control points are generated or selected through the matching process in near real time, and are used for space resection to get adjusted sensor models. Finally, more precise and accurate geolocation of the targets can possibly be done on the fly, and we have got the promising result on performance analysis in terms of the geolocation quality.

The Effects of Virtual Reality Games in Posture Correction Exercise on the Posture and Balance of Patients with Forward Head Posture

  • Son, Ho-Hee
    • 대한물리의학회지
    • /
    • 제15권2호
    • /
    • pp.11-21
    • /
    • 2020
  • PURPOSE: This study examined the effects of posture improvement exercise using virtual reality programs on the posture and balance of patients with forward head postures. METHODS: Thirty men and women in their 20 s, who had a forward head posture, were divided randomly into a group with posture correction exercise and a group with posture correction exercise combined with virtual reality programs. The posture correction exercise was composed of squats, XCO training, and chin-tuck exercise. In contrast, exercise with virtual reality games involved the Hot Squat, Climbey, and Baskhead programs while wearing a headset. Both groups performed the exercises 15 min a day, three times per week, for four weeks. The balance ability, distance between the acromion and earlobe, and neck joint range of motion were assessed before and after the exercises. RESULTS: Both groups showed significant reductions in the distance between the acromion and the earlobe, along with significant improvements in the range of joint motion. The group that performed the virtual reality exercises showed a significant increase in the limit of stability. Both groups showed a significant decrease in the sway length. In contrast, the group given the virtual reality exercises showed a significant reduction in the sway speed while standing with their eyes closed. CONCLUSION: Exercise applying virtual reality programs can be used in clinical and home programs to correct the postures of individuals with a forward head posture because they can trigger interest in inducing active participation.

무지 외반증 교정 수술 후 합병증 (Complications after Surgical Correction of Hallux Valgus)

  • 배서영;이의종
    • 대한족부족관절학회지
    • /
    • 제21권2호
    • /
    • pp.50-54
    • /
    • 2017
  • The goal of surgical correction for hallux valgus is to achieve a painless, shoe-wearable, and relatively straight toe with a balanced joint motion that results in aesthetically and functionally satisfactory toe. To date, there has not been a consensus on the ultimate surgical procedure for hallux valgus correction. Unfortunately, such a consensus may be difficult since it is not uncommon to encounter complications after hallux valgus correction. Postoperative soft tissue complications include difficult wound healing, infection, hypertrophy, or pain of the scar, joint stiffness, and tendon or sensory nerve damage. Postoperative bony complications include malunion, nonunion, failure of fixation, failure of angle correction, recurred deformity, osteomyelitis, and failure of balance between the metatarsal heads. Herein, we review common complications after surgical correction of hallux valgus, such as stiff joint, bony complications, recurrence of the deformity, and hallux varus.

Development of nationwide amplification map of response spectrum for Japan based on station correction factors

  • Maruyama, Yoshihisa;Sakemoto, Masaki
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.17-27
    • /
    • 2017
  • In this study, the characteristics of site amplification at seismic observation stations in Japan were estimated using the attenuation relationship of each station's response spectrum. Ground motion records observed after 32 earthquakes were employed to construct the attenuation relationship. The station correction factor at each KiK-net station was compared to the transfer functions between the base rock and the surface. For each station, the plot of the station correction factor versus the period was similar in shape to the graphs of the transfer function (amplitude ratio versus period). Therefore, the station correction factors are effective for evaluating site amplifications considering the period of ground shaking. In addition, the station correction factors were evaluated with respect to the average shear wave velocities using a geographic information system (GIS) dataset. Lastly, the site amplifications for specific periods were estimated throughout Japan.

완전 데이터 적응형 MLS 근사 알고리즘을 이용한 Interleaved MRI의 움직임 보정 알고리즘 (Motion Artifact Reduction Algorithm for Interleaved MRI using Fully Data Adaptive Moving Least Squares Approximation Algorithm)

  • 남혜원
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권1호
    • /
    • pp.28-34
    • /
    • 2020
  • In this paper, we introduce motion artifact reduction algorithm for interleaved MRI using an advanced 3D approximation algorithm. The motion artifact framework of this paper is data corrected by post-processing with a new 3-D approximation algorithm which uses data structure for each voxel. In this study, we simulate and evaluate our algorithm using Shepp-Logan phantom and T1-MRI template for both scattered dataset and uniform dataset. We generated motion artifact using random generated motion parameters for the interleaved MRI. In simulation, we use image coregistration by SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) to estimate the motion parameters. The motion artifact correction is done with using full dataset with estimated motion parameters, as well as use only one half of the full data which is the case when the half volume is corrupted by severe movement. We evaluate using numerical metrics and visualize error images.

블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기 (Object-oriented coder using block-based motion vectors and residual image compensation)

  • 조대성;박래홍
    • 전자공학회논문지B
    • /
    • 제33B권3호
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF

Jitter Correction of the Face Motion Capture Data for 3D Animation

  • Lee, Junsang;Han, Soowhan;Lee, Imgeun
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권9호
    • /
    • pp.39-45
    • /
    • 2015
  • Along with the advance of digital technology, various methods are adopted for capturing the 3D animating data. Especially, in 3D animation production market, the motion capture system is widely used to make films, games, and animation contents. The technique quickly tracks the movements of the actor and translate the data to use as animating character's motion. Thus the animation characters are able to mimic the natural motion and gesture, even face expression. However, the conventional motion capture system needs tricky conditions, such as space, light, number of camera etc. Furthermore the data acquired from the motion capture system is frequently corrupted by noise, drift and surrounding environment. In this paper, we introduce the post production techniques to stabilizing the jitters of motion capture data from the low cost handy system based on Kinect.