• Title/Summary/Keyword: Motion Compensation

Search Result 583, Processing Time 0.022 seconds

Alternative Transform Based on the Correlation of the Residual Signal (잔여 신호의 상관성에 기반한 선택 변환)

  • Lim, Sung-Chang;Kim, Dae-Yeon;Lee, Yung-Lyul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.80-92
    • /
    • 2008
  • Many predominant video coding tools in terms of coding efficiency were adopted in the latest video coding standard, H.264/AVC. Regardless of development of these predominant video coding tools such as the variable block-size motion estimation/compensation, intra prediction based on various directions, and so on, the discrete cosine transform has been continuously used starting from the early video coding standards. Generally, the correlation coefficient of the residual signal is usually less than 0.5 when this residual signal is actually encoded. In this interval of correlation coefficient, the discrete cosine transform does not show the optimal coding gain, and the discrete sine transform which is a sub-optimal transform when the correlation coefficient is in the interval from -0.5 to 0.5 can be used in conjunction with the discrete cosine transform in the video coding. In this paper, an alternative transform that alternatively uses the discrete sine transform and integer cosine transform in H.264/AVC by using rate-distortion optimization is proposed. The proposed method achieves a BD-PSNR gain of up to 0.71 dB compared to H.264/AVC JM 10.2 at relatively high bitrates.

Lightweight video coding using spatial correlation and symbol-level error-correction channel code (공간적 유사성과 심볼단위 오류정정 채널 코드를 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.188-199
    • /
    • 2008
  • In conventional video coding, encoder complexity is much higher than that of decoder. However, investigations for lightweight encoder to eliminate motion prediction/compensation claiming most complexity in encoder have recently become an important issue. The Wyner-Ziv coding is one of the representative schemes for the problem and, in this scheme, since encoder generates only parity bits of a current frame without performing any type of processes extracting correlation information between frames, it has an extremely simple structure compared to conventional coding techniques. However, in Wyner-Ziv coding, channel decoding errors occur when noisy side information is used in channel decoding process. These channel decoding errors appear more frequently, especially, when there is not enough correlation between frames to generate accurate side information and, as a result, those errors look like Salt & Pepper type noise in the reconstructed frame. Since this noise severely deteriorates subjective video quality even though such noise rarely occurs, previously we proposed a computationally extremely light encoding method based on selective median filter that corrects such noise using spatial correlation of a frame. However, in the previous method, there is a problem that loss of texture from filtering may exceed gain from error correction by the filter for video sequences having complex torture. Therefore, in this paper, we propose an improved lightweight encoding method that minimizes loss of texture detail from filtering by allowing information of texture and that of noise in side information to be utilized by the selective median filter. Our experiments have verified average PSNR gain of up to 0.84dB compared to the previous method.

Differences in Static Lower Extremity Alignment according to the History of Lateral Ankle Sprain: Efficacy and Limitation of Static Lower Limb Alignment Measurement as a Predictor of Lateral Ankle Sprain (외측 발목 염좌 병력에 따른 정적 하지 정렬 차이: 외측 발목 염좌의 예측인자로서 정적 하지 정렬 검사의 효용성과 한계점)

  • Jeon, Hyung Gyu;Ha, Sunghe;Lee, Inje;Kang, Tae Kyu;Kim, Eun Sung;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Objective: The aim of this study was to investigate 1) the difference in static lower extremity alignment (SLEA) according to a history of lateral ankle sprain (LAS), 2) to identify SLEA factors affecting LAS, and 3) to present the cut-off value and 4) the usefulness and limitations of the SLEA measurement. Method: This case-control study recruited 88 men (age: 27.78±4.69 yrs) and 39 women (age: 24.62±4.20 yrs) subjects with and without LAS. SLEA measurement protocol included Q angle, tibiofemoral angle, genu recurvatum, rear foot (RF) angle, tibal varum and torsion, navicular drop, ankle dorsiflexion range of motion (DF ROM). Independent t-test, logistic regression and receiver operating characteristic (ROC) curve were used for statistical analysis. Results: Men with a history of LAS had significantly smaller Q angles both in standing and in supine position, while women with a history of LAS had significantly greater DF ROM in non-weight bearing (NWB; p < 0.05). Logistic regression model suggests tibial varum (OR = 0.779, p = 0.021) and WB DF ROM (OR = 1.067, p = 0.045) were associated with LAS in men. In case of women, there were no significant SLEA factors for LAS, however, ROC curve analysis revealed standing RF angle (AUC = 0.647, p = 0.028) and NWB DF ROM (AUC = 0.648, p = 0.026) could be affecting factors for LAS. Conclusion: There are differences in SLEA according to the history of LAS, furthermore, the identified items were different by sex. In case of men, tibial varum and WB DF ROM affect LAS occurrence. Standing RF angle and NWB DF ROM of women could be a predictor for LAS. However, since the sensitivity and specificity in most of the SLEA measurements are low, kinematic in dynamic tasks should be considered together for a more accurate evaluation of LAS risk.