• Title/Summary/Keyword: Motion Compensation

Search Result 583, Processing Time 0.031 seconds

Robust Walking Algorithm of Biped Robot on Uneven Terrain (비평탄 지형에서 이족로봇의 강인한 보행 알고리즘)

  • Lee, Bo-Hoon;Park, Jong-Han;Lee, Chang-Seok;Kim, Yong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.33-39
    • /
    • 2011
  • Biped robot with high DOF has instability in mechanism. Therefore, it is important to guarantee walking stability of biped robot. Biped robot can stably walk on the flat ground using static walking patterns. However, walking stability of robot becomes increasingly worse on the uneven terrain. In the paper, we propose a robust walking algorithm of biped robot with motion stabilization to solve the problem The proposed algorithm was designed to stabilize walking motions based on the inclination of robot body using a gyro sensor and a accelerometer equipped in the center of the upper body. If unstable motions are recognized, angles of each joints are modified to increase stability by using compensation of angles of lower legs. The experimental results show that biped robot performs stable walking on the uneven terrain.

Comparison of Center of Pressure Displacement during Sit to Stand to Sit and Balance Ability of Subjects with and without Chronic Ankle Instability

  • Hyun-Sung Kim;Seung-Jun Oh
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Purpose : The purpose of this study is to compare the balance ability between subjects with chronic ankle instability and normal people and the center of pressure displacement during the sit to stand and stand to sit. Methods : The subjects of this study were 63 who met the inclusion criteria and were classified into normal group (n=33) and chronic ankle instability group (n=30). The displacement of the center of pressure during sit to stand and stand to sit was measured. And the limit of stability and Y-balance tests were performed to measure the balance ability. Independent t-test was conducted to compare center of pressure displacement and balance ability between groups, and pearson correlation was conducted to analyze the correlation between the center of pressure displacement and balance ability. Results : In the case of the center of pressure displacement, there was a significant difference between the two groups during sit to stand and stand to sit. In the case of balance, both limit of stability and Y-balance test showed significant differences between the two groups. At the time of sit to stand, the center of pressure displacement showed a significant correlation with balance abilities, and at the time of stand to sit, the center of pressure displacement showed a significant correlation with Y-balance test. Conclusion : Chronic ankle instability shows that there is a lot of sway in the body due to compensation to replace the decrease in ankle joint range of motion when performing sit to stand and stand to sit due to sensory input damage such as decrease in ankle range of motion and decrease in ankle proprioception. Chronic ankle instability is expected to have a negative effect on our daily lives in life. The results of this study will serve as the basis for the dynamic approach to objective evaluation, treatment, and prevention of chronic ankle instability.

On the Hybrid Prediction Pyramid Compatible Coding Technique (혼성 예측 피라미드 호환 부호화 기법)

  • 이준서;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.33-46
    • /
    • 1996
  • Inthis paper, we investigate the compatible coding technique, which receives much interest ever since the introduction of HDTV. First, attempts have been made to analyze the theoretical transform coding gains for various hierarchical decomposition techniques, namely subband, pyramid and DCT-based decomposition techniques. It is shown that the spatical domain techniques proide higher transform coding gains than the DCT-based coding technique. Secondly, we compare the performance of these spatial domain techniques, in terms of the PSNR versus various rate allocations to each layer. Based on these analyses, it is believed that the pyramid decomposition is more appropriate for the compatible coding. Also in this paper, we propose a hybrid prediction pyramid coding technique, by combining the spatio-temporal prediction in MPEG-2[3] and the adaptive MC(Motion Compensation)[1]. In the proposed coding technigue, we also employ an adaptive DCT coefficient scanning technique to exploit the direction information of the 2nd-layer signal. Through computer simulations, the proposed hybrid prediction with adaptive scanning technuque shows the PSNR improvement, by about 0.46-1.78dB at low 1st-layer rate(about 0.1bpp) over the adaptive MC[1], and by about 0.33-0.63dB at high 1st-layer rate (about 0.32-0.43bpp) over the spatio-temporal prediction[3].

  • PDF

Motion Compensation Technique of H.264/AVC Software Decoder (H.264/AVC 소프트웨어 디코더의 움직임 보상 기법)

  • Jeong Sa-Kyun;Jeon Hyung-Su;Kim Eun-Mi;Yoo Cheol-Jung;Chang Ok-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06d
    • /
    • pp.325-327
    • /
    • 2006
  • H.264/AVC는 ITU-T H.264와 ISO/IEC 14496-10(MPEG-4 Part 10)으로 승인된 새로운 국제 비디오 압축 표준이다. H.264/AVC는 압축부호화 효율(이하 압축률)이 높으며 MPEG-2나 MPEG-4등에 비해 압축률이 2배 이상 향상되었으나 복잡도 또한 훨씬 증가하였다. 월등한 압축성능 때문에 방송 분야(DTV 등), 저장용 시스템 분야(PVR 등)에 많은 응용 분야들에 적용하기 위한 움직임이 있다. 그러나, 디코더로 구현하면 복잡도 증가하는 문제가 발생한다. HD급을 지원하기 위한 메모리 대역폭의 경우 MPEG-2 HD에 비해 H.264/AVC만의 복잡한 움직임 보상으로 인해 2배 이상이 요구된다. H.264/AVC 디코더는 두 개의 참조픽처를 이용하여 움직임 보상하는 B-픽처와 쌍예측 픽처가있다. 여기서, 참조픽처를 각각 하나씩만 사용하여 디코딩 하면 기존의 복잡도를 줄일 수 있다. 본 논문에서 제안하는 방법은 하나의 참조픽처 선택으로 H.264/AVC 소프트웨어 디코더에서 움직임 보상을 한다. 이로 인하여 복잡도와 메모리 대역폭이 감소하는 방법을 제안한다.

  • PDF

Observation Likelihood Function Design and Slippage Error Compensation Scheme for Indoor Mobile Robots (실내용 이동로봇을 위한 위치추정 관측모델 설계 및 미끄러짐 오차 보상 기법 개발)

  • Moon, Chang-Bae;Kim, Kyoung-Rok;Song, Jae-Bok;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1092-1098
    • /
    • 2007
  • A mobile robot localization problem can be classified into following three sub-problems as an observation likelihood model, a motion model and a filtering technique. So far, we have developed the range sensor based, integrated localization scheme, which can be used in human-coexisting real environment such as a science museum and office buildings. From those experiences, we found out that there are several significant issues to be solved. In this paper, we focus on three key issues, and then illustrate our solutions to the presented problems. Three issues are listed as follows: (1) Investigation of design requirements of a desirable observation likelihood model, and performance analysis of our design (2) Performance evaluation of the localization result by computing the matching error (3) The semi-global localization scheme to deal with localization failure due to abrupt wheel slippage In this paper, we show the significance of each concept, developed solutions and the experimental results. Experiments were carried out in a typical modern building environment, and the results clearly show that the proposed solutions are useful to develop practical and integrated localization schemes.

Effect Analysis of Virtual-reality Vestibular Rehabilitation based on Eye-tracking

  • Lee, Sungjin;Hong, Min;Kim, Sungyeup;Choi, Seong Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.826-840
    • /
    • 2020
  • Vertigo is one of the most common complaints encountered by physicians and the patients are steadily increasing. These patients are exposed to the risk of secondary accidents such as falls due to vertigo. There are two ways to improve this symptom: medication and rehabilitation. Although temporary symptomatic improvement may be expected in patients treated with medication, vertigo may recur and medication can delay central compensation. In contrast vestibular rehabilitation exploits central mechanisms of neuroplasticity to increase postural stability and enhance visual-vestibular interactions in situations that generate conflicting sensory information. However, vestibular rehabilitation may be compromised by incorrect performance of exercises, and there is a need for active effort and interest from the patient during rehabilitation. To solve these problems, we decided to apply FOVE HMD for eye-tracking and Unity3D to create virtual reality. The proposed eye-tracking based algorithm calculates the concentration of users with eye tracking data and calculates the motion width of the patient with nystagmus, thus the severity of the patient according to the score can be determined. According to our experimental test against healty group and patients group, this result showed the meaningful data to use define the contents result.

Integrated Guidance and Control Design for the Near Space Interceptor

  • WANG, Fei;LIU, Gang;LIANG, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.278-294
    • /
    • 2015
  • Considering the guidance and control problem of the near space interceptor (NSI) during the terminal course, this paper proposes a three-channel independent integrated guidance and control (IGC) scheme based on the backstepping sliding mode and finite time disturbance observer (FTDO). Initially, the three-channel independent IGC model is constructed based on the interceptor-target relative motion and nonlinear dynamic model of the interceptor, in which the channel coupling term and external disturbance are regarded as the total disturbances of the corresponding channel. Then, the FTDO is introduced to estimate the target acceleration and control system loop disturbances, and the feed-forward compensation term based on the estimated values is employed to effectively remove the effect of disturbances in finite time. Subsequently, the IGC algorithm based on the backstepping sliding mode is also given to obtain the virtual control moment. Furthermore, a robust least-squares weighted control allocation (RLSWCA) algorithm is employed to distribute the previous virtual control moment among the corresponding aerodynamic fins and reaction jets, which also takes into account the uncertainty in the control effectiveness matrix. Finally, simulation results show that the proposed IGC method can obtain the small miss distance and smooth interceptor trajectories.

Rate-Distortion Oprimized Error-Resilient Intra Update in MPEG-4 Video Coding (MPEG-4 동영상 압축에서 비트율과 오류 내성을 고려한 인트라 업데이트)

  • Kim, Woo-Shik;Park, Rae-Hong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.591-601
    • /
    • 2002
  • Motion compensation is a powerful method to compress an image sequence. Its main drawback is that once an error is occurred, the error propagates through the frames. Recently, the intra update method was proposed to stop the error propagation at the expense of reduction in compression efficiency. This paper proposes an intra update method based on a rate-distortion optimization in error prone environments. The rate and the distortion are estimated using the Lagrangian optimization to select the coding mode and the quantization step size. The proposed method is applied to MPEG-4 codec, and the experimental results show that it is robust to the error such as packet losses comparing with the conventional ones.

MPEG-2 Decoder with Down-sampling for Fast Transcoding (고속 압축변환기를 위한 MPEG-2 복호기)

  • Oh, Seung-Kyun;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.664-671
    • /
    • 2002
  • 고속으로 압축변환을 하기 위해 DCT(Discrete Cosine Transform) 영역에서 영상의 해상도를 줄이는 MPEG-2 복호기를 제안한다. 제안하는 복호기는 움직임 보상을 하기 전에 DCT 영역에서 영상의 해상도를 줄이며 해상도가 줄어든 영상에 대해서 DCT 영역에서 움직임 보상을 수행한다. 본래 해상도의 영상 (N${\times}$CN)에서는 1/2화소 정밀도의 움직임 보상을 해야 하지만 해상도가 반으로 줄어든 영상(N/2${\times}$N/2)에 대해서는 1/4화소 정밀도의 움직임 보상을 수행해야 한다. 하지만 해상도가 줄어든 영상에 대해 1/4화소 정밀도의 움직임 보상을 수행하면 영상이 흐릿해지는 현상이 발생할 수 있다. 본 논문에서는 해상도를 줄인 영상에 대해 계산시간 뿐만 아니라 DCT 영역에서의 움직임 보상 시에 발생 할 수 있는 흐려짐도 줄일 수 있는 방법을 제안한다. 실험 결과는 제안한 방법이 높은 해상도의 영상을 낮은 해상도의 영상으로 효율적으로 복호할 수 있는 알고리즘이라는 것을 보여준다.

Path coordinator by the modified genetic algorithm

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1939-1943
    • /
    • 1991
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the shortest collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal of this paper, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy[3] and a traveling salesman problem strategy(TSP)[23]. The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Neural Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is proposed to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm[21] and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm[5].

  • PDF