• 제목/요약/키워드: Motion Accuracy

검색결과 1,622건 처리시간 0.044초

A Motion Detection Approach based on UAV Image Sequence

  • Cui, Hong-Xia;Wang, Ya-Qi;Zhang, FangFei;Li, TingTing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1224-1242
    • /
    • 2018
  • Aiming at motion analysis and compensation, it is essential to conduct motion detection with images. However, motion detection and tracking from low-altitude images obtained from an unmanned aerial system may pose many challenges due to degraded image quality caused by platform motion, image instability and illumination fluctuation. This research tackles these challenges by proposing a modified joint transform correlation algorithm which includes two preprocessing strategies. In spatial domain, a modified fuzzy edge detection method is proposed for preprocessing the input images. In frequency domain, to eliminate the disturbance of self-correlation items, the cross-correlation items are extracted from joint power spectrum output plane. The effectiveness and accuracy of the algorithm has been tested and evaluated by both simulation and real datasets in this research. The simulation experiments show that the proposed approach can derive satisfactory peaks of cross-correlation and achieve detection accuracy of displacement vectors with no more than 0.03pixel for image pairs with displacement smaller than 20pixels, when addition of image motion blurring in the range of 0~10pixel and 0.002variance of additive Gaussian noise. Moreover,this paper proposes quantitative analysis approach using tri-image pairs from real datasets and the experimental results show that detection accuracy can be achieved with sub-pixel level even if the sampling frequency can only attain 50 frames per second.

균형 재활 훈련을 위한 특정 회전 움직임에서 피검자 동작 분석을 위한 깊이 센서 기반 키넥트 시스템의 정확성 및 부정확성 평가 (Evaluation of Accuracy and Inaccuracy of Depth Sensor based Kinect System for Motion Analysis in Specific Rotational Movement for Balance Rehabilitation Training)

  • 김충연;정호현;전성철;장경배;전경진
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권5호
    • /
    • pp.228-234
    • /
    • 2015
  • The balance ability significantly decreased in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of improving balance ability using real-time systems, but it is limited by the expensive test equipment and specialized resources. Recently, Kinect system based on depth data has been applied to address these limitations. Little information about accuracy/inaccuracy of Kinect system is, however, available, particular in motion analysis for evaluation of effectiveness in rehabilitation training. Therefore, the aim of the current study was to evaluate accuracy/inaccuracy of Kinect system in specific rotational movement for balance rehabilitation training. Six healthy male adults with no musculoskeletal disorder were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in directions of AP (anterior-posterior), ML (medial-lateral), right and left diagonal direction. The dynamic motions of the subjects were measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras for comparative evaluation. The results of the error rate for hip and knee joint alteration of Kinect system comparison with infrared camera based motion capture system occurred smaller values in the ML direction (Hip joint: 10.9~57.3%, Knee joint: 26.0~74.8%). Therefore, the accuracy of Kinect system for measuring balance rehabilitation traning could improve by using adapted algorithm which is based on hip joint movement in medial-lateral direction.

Determination of Optimum Threshold for Accuracy of People-counting System Based on Motion Detection

  • Ryu, Hanseul;Song, Junho;Lee, Boram;Lee, Kiyoung
    • 한국환경보건학회지
    • /
    • 제41권5호
    • /
    • pp.299-304
    • /
    • 2015
  • Objectives: A people-counting system measures real-time occupancy through motion detection. Accurate people-counting can be used to calculate suitable ventilation demands. This study determined the optimum motion threshold for a people-counting system. Methods: In a closed room with two occupants moving constantly, different thresholds were tested for the accuracy of a people-counting system. The experiments were conducted at 150, 300, 450 and 600 lux. These levels of brightness included the illumination levels of most public indoor areas. The experiments were repeated with three types of clothing coloration. Results: Overall, a threshold of 16 provided the lowest mean error percentage for the people-counting system. Brightness and clothing color did not have a significant impact on the results. Conclusion: A people-counting system could be used with threshold of 16 for most indoor environments.

립모션 센서 기반 증강현실 인지재활 훈련시스템을 위한 합성곱신경망 손동작 인식 (Hand Gesture Recognition with Convolution Neural Networks for Augmented Reality Cognitive Rehabilitation System Based on Leap Motion Controller)

  • 송근산;이현주;태기식
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권4호
    • /
    • pp.186-192
    • /
    • 2021
  • In this paper, we evaluated prediction accuracy of Euler angle spectrograph classification method using a convolutional neural networks (CNN) for hand gesture recognition in augmented reality (AR) cognitive rehabilitation system based on Leap Motion Controller (LMC). Hand gesture recognition methods using a conventional support vector machine (SVM) show 91.3% accuracy in multiple motions. In this paper, five hand gestures ("Promise", "Bunny", "Close", "Victory", and "Thumb") are selected and measured 100 times for testing the utility of spectral classification techniques. Validation results for the five hand gestures were able to be correctly predicted 100% of the time, indicating superior recognition accuracy than those of conventional SVM methods. The hand motion recognition using CNN meant to be applied more useful to AR cognitive rehabilitation training systems based on LMC than sign language recognition using SVM.

Impact of scanning strategy on the accuracy of complete-arch intraoral scans: a preliminary study on segmental scans and merge methods

  • Mai, Hai Yen;Mai, Hang-Nga;Lee, Cheong-Hee;Lee, Kyu-Bok;Kim, So-yeun;Lee, Jae-Mok;Lee, Keun-Woo;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권2호
    • /
    • pp.88-95
    • /
    • 2022
  • PURPOSE. This study investigated the accuracy of full-arch intraoral scans obtained by various scan strategies with the segmental scan and merge methods. MATERIALS AND METHODS. Seventy intraoral scans (seven scans per group) were performed using 10 scan strategies that differed in the segmental scan (1, 2, or 3 segments) and the scanning motion (straight, zigzag, or combined). The three-dimensional (3D) geometric accuracy of scan images was evaluated by comparison with a reference image in an image analysis software program, in terms of the arch shape discrepancies. Measurement parameters were the intermolar distance, interpremolar distance, anteroposterior distance, and global surface deviation. One-way analysis of variance and Tukey honestly significance difference post hoc tests were carried out to compare differences among the scan strategy groups (α = .05). RESULTS. The linear discrepancy values of intraoral scans were not different among scan strategies performed with the single scan and segmental scan methods. In general, differences in the scan motion did not show different accuracies, except for the intermolar distance measured under the scan conditions of a 3-segmental scan and zigzag motion. The global surface deviations were not different among all scan strategies. CONCLUSION. The segmental scan and merge methods using two scan parts appear to be reliable as an alternative to the single scan method for full-arch intraoral scans. When three segmental scans are involved, the accuracy of complete arch scan can be negatively affected.

IOPI를 활용한 조음기관 훈련 프로그램이 경직형 마비말장애의 조음 능력에 미치는 영향 (Effect of Articulation Abilities on the Articulator Strength Training by IOPI of Spasticity Dysarthric Speech)

  • 이장신;이지윤;김선희
    • 재활치료과학
    • /
    • 제9권1호
    • /
    • pp.91-99
    • /
    • 2020
  • 목적 : 본 연구의 목적은 IOPI 조음 근력 강화 훈련 프로그램이 경직형 마비말장애 환자들의 조음기관(혀, 입술) 근력 상승, 조음 정확도, 조음 교대운동 속도, 규칙성 및 정확도 변화에 끼치는 효과에 대해 연구하고자 하였다. 연구 방법 : 본 연구는 제주에 거주하는 경직형 마비말장애 환자 3명을 대상으로 제주 소재의 대학병원 언어치료실에서 기초선 단계, 7주간 주3회씩 1회기당 30분씩 중재를 한 후에 사후 평가를 실시하여 혀와 입술의 근력, SMST 조음선별검사 중 /ㄹ, ㅅ, ㅈ/ 조음 정확도, 조음 교대운동 속도, 규칙성 및 정확도 변화를 연구하는 단일대상연구를 실시하였다. 결과 : IOPI 조음 근력 강화 훈련 프로그램을 경직형 마비말장애 환자들에게 실시한 이후에 조음기관 근력, /ㄹ, ㅅ, ㅈ/ 조음동안 정조음 산출 수, 조음 교대운동 검사 결과 초당 /퍼/, /터/, /커/, /러/, /긍/, /아/, /퍼터커/ 산출 횟수의 증가와 조음 규칙성과 조음 규칙성 및 정확성에서 긍정적인 변화가 나타났다. 결론 : 본 연구 결과, IOPI 조음 근력 강화 훈련 프로그램이 경직형 마비말장애 환자들의 조음 정확도, 조음 교대운동 속도, 규칙성 및 정확도 향상을 도모하였으며, 추후 IOPI를 다양한 하위 유형의 마비말장애 환자에게 실시하여 각 하위 유형 간 차이를 비교하고, 마비말장애의 가장 대표적인 뇌성마비 아동들에게 가정에서 IOPI를 활용한 조음기관 기능 훈련을 연계한 프로그램 적용 이후 조음 능력의 변화에 대해 연구한다면 매우 유용할 것으로 사료된다.

머시닝센터의 원운동정도 측정시스템의 구성 (Organizartion of Measurin System of Circular Motion Accuracy of Machining Center)

  • 김영석;낭궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.305-311
    • /
    • 1993
  • In recent years, it has been variously developed for testing the accuracy of circular motion of NC machine tools, for example Telescoping Ball Bar Method by Bryan,Circular Test Method by Knapp and r $_{- \theta}$ Mathod by Tsutsumi etc., but it is not yet settled in the code of measuring methods of motion errors of NC machine tools, because of errors of measuring units and sensors, and also especially the difficulties of centering of measuring units. In this paper, in use of magnetic type linear scale with resolution of 0.5 .mu. m and tick pulses come out from computer, it has become possible for detecting of linear displacement of radial errors and measuring of revolution angle of circular motion of NC machine tools.

  • PDF

실감만남 공간에서의 비전 센서 기반의 사람-로봇간 운동 정보 전달에 관한 연구 (Vision-based Human-Robot Motion Transfer in Tangible Meeting Space)

  • 최유경;나성권;김수환;김창환;박성기
    • 로봇학회논문지
    • /
    • 제2권2호
    • /
    • pp.143-151
    • /
    • 2007
  • This paper deals with a tangible interface system that introduces robot as remote avatar. It is focused on a new method which makes a robot imitate human arm motions captured from a remote space. Our method is functionally divided into two parts: capturing human motion and adapting it to robot. In the capturing part, we especially propose a modified potential function of metaballs for the real-time performance and high accuracy. In the adapting part, we suggest a geometric scaling method for solving the structural difference between a human and a robot. With our method, we have implemented a tangible interface and showed its speed and accuracy test.

  • PDF

다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정 (Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot)

  • 조성윤
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

능동제어모세관을 이용한 초정밀 유정압테이블의 5 자유도 운동 오차 보정 (Compensation of Five DOF Motion Errors in a Ultra Precision Hydrostatic Table Using the Active Controlled Capillaries)

  • 박천홍;오윤진;이후상;이득우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.769-772
    • /
    • 2005
  • Five DOF motion errors of a hydrostatic bearing table driven by the coreless type linear motor were compensated utilizing the active controlled capillaries in this study. Horizontal linear motion and yaw error were simultaneously compensated using two active controlled capillaries and vertical linear motion, pitch and yaw error were also simultaneously compensated using three active controlled capillaries. By the compensation, horizontal linear motion accuracy and yaw were improved from 0.16 ${\mu}m$ and 1.96 arcsec to 0.02 ${\mu}m$ and 0.03 arcsec. Vertical linear motion accuracy, pitch and roll were also largely improved from 0.18 ${\mu}m$, 2.26 arcsec and 0.14 arcsec upto 0.03 ${\mu}m$, 0.07 arcsec and 0.02 arcsec. The compensated motion errors were within the range of measuring repeatability which was ${\pm}0.02\;{\mu}m$ in the linear motion and ${\pm}0.05$ arcsec in the angular motion. From these results, it is found that the motion error compensation method utilizing the active controlled capillaries are very effective to improve the five motion accuracies of the hydrostatic bearing tables.

  • PDF