• Title/Summary/Keyword: Moth eye structures

Search Result 3, Processing Time 0.022 seconds

Fabrication of Disordered Subwavelength Structures on Curved Surfaces by Using a Thermal Dewetting Process

  • Lee, Jong Heon;Song, Young Min
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.172-177
    • /
    • 2015
  • We present disordered moth eye structures on curved surfaces fabricated by dry etching of thermally dewetted metal nanoparticles. This lithography-free fabrication allows the formation of subwavelength scale nanostructures on the strongly inclined surfaces such as ball lens as well as on the microlens arrays with low curvature. In particular, we found that the size and average distance of nanostructures are closely related to the inclined angle of the surface. Experimental results on oblique angle deposition of metal thin films followed by thermal dewetting also support these effects.

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF