• Title/Summary/Keyword: Most penetrating particle size

Search Result 6, Processing Time 0.02 seconds

Approximation of most penetrating particle size for fibrous filters considering Cunningham slip correction factor

  • Jung, Chang Hoon;Yoon, Young Jun;Um, Junshik;Lee, Seoung Soo;Lee, Ji Yi;Chiao, Sen;Kim, Yong Pyo
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.439-445
    • /
    • 2020
  • In the estimation of the aerosol single fiber efficiency using fibrous filters, there is a size range, where the particles penetrate most effectively through the fibrous collectors, and corresponding minimum single fiber efficiency. For small particles in which the diffusion mechanism is dominant, the Cunningham slip correction factor (Cc) affects the single fiber efficiency and the most penetrating particle size (MPPS). Therefore, for accurate estimation, Cc is essential to be considered. However, many previous studies have neglected this factor because of its complexity and the associated difficulty in deriving the appropriate parameterization particularly for the MPPS. In this study, the expression for the MPPS, and the corresponding expression for the minimum single fiber efficiency are analytically derived, and the effects of Cc are determined. In order to accommodate the slip factor for all particle-size ranges, Cc is simplified and modified. Overall, the obtained analytical expression for the MPPS is in a good agreement with the exact solution.

Numerical analysis of particle behavior around a bipolar charged electret fiber (정전 섬유필터 주위의 입자포집 및 거동에 관한 수치해석적 연구)

  • An, Gang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1509-1517
    • /
    • 1997
  • Charged and uncharged particle motions and collection characteristics around a bipolar charged rectangular shape electret fiber are studied numerically. Particle inertia, fluid drag, Coulomb force and polarization force are considered to predict the particle motion around the electret fiber. The effects of particle sizes, flow velocities, number of charges and polarities are also systematically investigated. For small size particles, the single fiber collection efficiency is greatly dependent on the charge polarity and the number of charges on a particle. However, particles larger than 5.mu.m do not show charging effect on collection efficiencies in the flow velocity ranges from 1.5 cm/s to 150 cm/s when the maximum charges are within +5 to -10. The results show that a strong electric field gradient at the corner of the bipolar charged fiber plays a very important role on collecting particles regardless of its charge polarity because of the polarization force. It also shows that the most penetrating particle size for a single electret fiber decreases as the flow velocity increases and the number of charges of a particle decreases.

Are Particulate Filtering Respirators Available in Korea Efficient for Nanoparticles? (<종설>국내 시판 방진마스크는 나노입자에 적합한가?)

  • Han, Don-Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.1
    • /
    • pp.62-71
    • /
    • 2011
  • There is widespread concern that particulate filtering respirators (PFRs) available in Korea will be efficient for nanoparticles. The purpose of this review study was to analyse research literature and recommend PFRs suitable for protection against nanoparticles. In all studies, respirators containing electret filter media (N95, P100 and FFP2, FFP3) consistently have their MPPS below 100 nm and particle penetration levels at the MPPS can vary widely, but they comply with NIOSH or EN certification criterion. Electret filtering facepieces respirators (FFRs) were found to shift in the Most-Penetrating Particle Size(MPPS) from 30-60 to 200-300 nm range after the electric charges were removed, and FFRs were above their minimum penetrations of criterion. Korean special class and first class FFRs (the same as FFP3 and FFP2, respectively) would be effcient for nanoparticles unless FFRs are removed electric charges. It is difficult to evaluate if mechanical PFRs is efficient for nanoparticles due to the lack of related materials.

Fractional efficiency of Nanomaterials for the High efficiency respiratory filters (고효율 호흡보호구의 나노물질 입경별 제거 효율)

  • Lee, Gwang-Jae;Ji, Jun-Ho;Kim, Won-Geun;Yook, Se-Jin;Kim, Jong-Kyo;Kim, Jung-Ho
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.95-102
    • /
    • 2016
  • Controlling exposures to occupational hazards is important for protecting workers. Certified facepiece respirators are recommended when engineering controls do not adequately prevent exposures to airborne nanomaterials. The objective of this study is to carry out the experimental performance test to investigate the fractional efficiencies of the filter media for two grades of facepiece respirators. Experimental performance evaluations were carried out for the test NaCl particles and silver nanoparticles. For media of respirator filter, the penetration of NaCl particles was less than 5% and the most penetrating particle size occurred at about 40 nm. For silver nanoparticles, the most penetrating particle size was about 20nm with higher efficiency than those of NaCl particles. Charge characteristics of airborne nanoparticles is important because the media of respirator filter is made by the electret filter media.

Performance Test of Air Filter Media (필터여재의 성능평가)

  • Ahn, K.H.;Bae, G.N.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.417-426
    • /
    • 1994
  • Filter media performance was evaluated using monodisperse NaCl particles with Differential Mobility Analyzer and Ultrafine Condensation Particle Counter. Low or medium performance filters show that the most penetrating particles size(MPPS) is around $0.3{\mu}m$ in diameter and is shifted to smaller sizes as the filter face velocity increases. However, HEPA and ULPA filters show MPPS is around $0.15{\mu}m$ in diameter and is also shifted to $0.1{\mu}m$ in diameter as the face velocity increases. In case of electret filter, the MPPS is found around $0.04{\mu}m$ region for Boltzmann charge equilibrium particles. There is a tendency of strong collection efficiency decrease for large particles as the face velocity increases on the contrary to the other filters. One of the medium performance filter efficiency was compared with filtration theory and the good agreetment was found in the experimental range.

  • PDF