• 제목/요약/키워드: Mortar wall

검색결과 109건 처리시간 0.024초

STUDY OF NEW CAST-IN-PLACE MORTAR WALL FOR HOUSE CONSTRUCTION COMPARED TO BRICK AND MORTAR-BLOCK SYSTEM (A SIMULATION IN DIFFERENT AREAS)

  • Arief Setiawan Budi Nugroho;Shin-ei Takano
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.196-202
    • /
    • 2009
  • Study from Yogyakarta earthquake reconstruction program, cast-in-place wall using fix-size formwork system (Old-CIP) has offered a good alternative for house construction. A simulation has also confirmed that this system using mortar as the main material can provide cheapest cost and lowest total man power compared to conventional wall construction technique: brick or mortar-block wall. This paper presents the new wall construction technique: full size cast-in-place wall (New-CIP). The detail of how this new technique implemented is described. In addition, considering that material and labor cost in one area is different to others, cost analysis for different resources prices and wages of three cities are taken into a simulation. The analysis is aimed to distinguish the implementation feasibility of New-CIP system compared to the four common wall systems. Finally, its implementation resistance is also discussed.

  • PDF

A Study on the Effectiveness of Heat Infrared Imaging Method for Monitoring the Physical Condition of the Mortar Walls

  • Yoshioka Ryouhei;Tachiiri Kaoru;Asari Kimihiro;Gotoh Keinosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.545-548
    • /
    • 2004
  • In Japan for protecting the slides of steep sloped areas covering the face of slopes by sprayed mortar became popular since 1970s. But, these mortar walls are getting older now. In this background, this study aims to find ways to develop a diagnostic technique of these faces of slope without physically contacting or destroying them. In doing so, we have used heat infrared imaging processing method and developed a simulation model to predict the weak portion of the wall. The results revealed that, by following the model vacuum of mortar wall can be detected having thickness up to 15cm.

  • PDF

Parametric study on the lateral strength of URM wall, retrofitted using ECC mortar

  • Niasar, Alireza Namayandeh;Alaee, Farshid Jandaghi;Zamani, Sohail Majid
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.451-466
    • /
    • 2020
  • In this paper, the effect of Engineered Cementitious Composites (ECC) on the lateral strength of a bearing unreinforced Masonry (URM) wall, was experimentally and numerically investigated. Two half scale solid walls were constructed and were tested under quasi-static lateral loading. The first specimen was an un-retrofitted masonry wall (reference wall) while the second one was retrofitted by ECC mortar connected to the wall foundation via steel rebar dowels. The effect of pre-compression level, ECC layer thickness and one or double-side retrofitting on the URM wall lateral strength was numerically investigated. The validation of the numerical model was carried out from the experimental results. The results indicated that the application of ECC layer increases the wall lateral strength and the level of increment depends on the above mentioned parameters. Increasing pre-compression levels and the lack of connection between the ECC layer and the wall foundation reduces the influence of the ECC mortar on the wall lateral strength. In addition, the wall failure mode changes from flexure to the toe-crashing behavior. Furthermore, in the case of ECC layer connected to the wall foundation, the ECC layer thickness and double-side retrofitting showed a significant effect on the wall lateral strength. Finally, a simple method for estimating the lateral strength of retrofitted masonry walls is presented. The results of this method is in good agreement with the numerical results.

An Experimental Study on the Thermal Performance of Cement Mortar with Granulated PCM

  • Jeong, You-Gun;Park, Ki-Bong;Lee, Han-Seung
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.548-557
    • /
    • 2012
  • In this study the thermal performance of G-PCM replaced for find aggregate in mortar specimens was evaluated using TG-DTA. As a result, it was found that when solid changed into liquid, it absorbed heat, and when liquid changed into solid, it radiated heat. In addition, the fluidity and the compressive strength of mortar with G-PCM can be applied to the floor mortar and a wall finish material. Also the higher the replacement ratio, the larger the latent heat capacity. It was found that the mortar with G-PCM slowed the increase and decrease of temperature. Thus, the duration of pleasant indoor temperature is extended by the floor and wall mortar with G-PCM. In conclusion, G-PCM is expected to reduce the heating energy consumption.

Mortar Characteristics for Reinforcement of Ancient Tomb Murals Using Oyster Shells

  • Lee, Hwa Soo;Yu, Yeong Gyeong;Han, Kyeong Soon
    • 보존과학회지
    • /
    • 제34권4호
    • /
    • pp.295-303
    • /
    • 2018
  • The application of reinforcing agents with hydraulic property and strength development characteristics was studied under conditions similar to those of mural-painting mortar made with oyster shell powder. Reinforcement mortar made with oyster shell powder showed hydraulic properties and strength to supplement the weaknesses of natural hydraulic lime(NHL); this confirmed its possibility as a wall-reinforcing material with enough strength for preserving mural paintings. Reinforcement mortar 1 showed hydraulic property and general characteristics of lime mortar, such as consistency and viscosity, as well as lower strength and higher whiteness compared to an NHL product. For Reinforcement mortar 2, the original wall sample characteristics were reflected by mixing more shell produced through calcination; and it showed similar strength to that of Reinforcement mortar 1 as well as high whiteness. In measuring the contraction ratio of reinforcement mortar samples, Reinforcement mortar 1 and 2 showed more stability in property change compared to the NHL Group.

점선과 주변자극의 추가가 caf$\grave{e}$ wall 착시에 미치는 효과 (The effect of added dotted line and surrounding stimulus on the caf$\grave{e}$ wall illusion)

  • 정우현;차한님
    • 감성과학
    • /
    • 제14권4호
    • /
    • pp.663-674
    • /
    • 2011
  • 점선의 추가와 주변 자극의 추가가 caf$\grave{e}$ wall 착시에서 지각된 착시량과 착시에 대한 확신도에 미치는 효과를 알아보기 위해 두 편의 실험을 수행하였다. 실험 1에서는 흰 색과 검은 색 벽돌이 나열된 세 줄의 벽돌층의 수평 경계에 흰색 벽돌과 검은색 벽돌의 중간 밝기를 가지는 회색 선분(모르타르:mortar)과 벽돌과 반대 밝기의 점선을 추가하였을 때 착시에 미치는 효과를 알아보았다. 실험 2에서는 실험 1에서 사용한 자극에 벽돌 층을 추가하여 주변자극의 추가에 따라 caf$\grave{e}$ wall 착시가 어떻게 달라지는지 살펴보았다. 실험 결과 회색 경계선에 점선을 추가하는 것은 착시 지각의 확신도에는 가산적으로 영향을 미치는 것으로 나타났으나 지각된 착시량에서는 가산적 영향이 나타나지 않았다. 반면 벽돌 층의 추가는 지각된 착시량에는 영향을 미쳤지만 착시지각의 확신도에는 영향을 미치지 않는 것으로 나타났다. 논의에서는 이러한 결과가 시각피질의 방위 선별적 세포의 반응과 관련이 있을 가능성에 대해 제안하였다.

  • PDF

외부치장적벽돌 벽체에 대한 콘크리트 보강브라켓의 보강효과에 관한 연구 (A Study on the Strengthening effect of Concrete Reinforcement Bracket on the External Clay Brick Wall)

  • 김선우;김양중
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.117-118
    • /
    • 2020
  • The masonry structure is constructed by cement mortar binding material of brick objects and uses reinforced hardware (connected hardware or wall tie) together when building. However, over time, the corrosion of reinforced steel and the deterioration of joint mortar as well as bricks cause the risk of collapse. In particular, when the externally decorated brick wall is installed on the concrete girder for each floor, the angle bracket is not constructed or corroded, the full-layer weight load is applied to the wall of 0.5B, which is an example of full-scale or collapse. The purpose of this study is to provide numerical information on the reinforcement design by experimentally studying the structural performance of concrete reinforcement brackets that reinforce the vertical load of the exterior wall.

  • PDF

경량기포모르터와 합성한 경량형강 벽체의 전단 저항 (Shear Resistance of Light-gauge Steel Stud Wall infilled with light-weight foamed mortar)

  • 이상섭;배규웅
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.397-406
    • /
    • 2004
  • 본 논문은 경량형강으로 제작한 프레임에 경량기포모르터를 채운 경량합성벽체의 전단 거동에 대한 실험 결과와 전단 강도 및 강성 평가를 제시한 것이다. 경량기포모르터는 스틸하우스 벽체의 구조 성능 및 단열 성능의 향상과 마감에 대한 시공성 개선을 위해 도입되었다. 연구 결과 단열 성능에 대한 기여도는 낮으나, 경량기포모르터의 슬러리 비중이 0.8 이상인 경우 구조 성능의 향상과 마감성이 좋은 것으로 나타났다. 본 연구에서는 전단 거동에 미치는 경량기포모르터의 영향을 알아보기 위해 경량기포모르터의 비중(0.6, 0.8, 1.0, 1.2) 벽체의 스터드 배치간격(450mm, 600mm, 900mm), 마감재(경량기포모르터, OSB, 석고보드) 및 브레이싱 등을 변수로 한 14개의 경량합성벽체를 제작하였고 비교를 위해 대표적인 스틸하우스 벽체 3개를 제작하였다. 면내전단 실험결과, 경량기포모르터를 타설한 경량합성벽체가 기존의 스틸스터드 벽체에 비해 최대 내력은 1.15~5.38배, 초기강성은 1.45~13.7배 증가한 것으로 나타났다. 또한 벽체 내부의 스터드를 900mm까지 확장하여도 무리가 없는 것으로 나타났다. 그러나 이와 같은 결과는 건조수축 균열이 억제되지 않은 상태에서 나온 것으로 경량합성벽체의 내력을 향상시키기 위해서는 경량기포모르터의 초기 건조수축균열을 억제하고 스터드와 경량기포모르터 사이의 부착력을 확보하는 것이 무엇보다도 중요한 것으로 나타났다.

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Dharmar Sakkarai;Nagan Soundarapandian
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.251-267
    • /
    • 2023
  • In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

마이크로 캡슐을 이용한 항균 기능성 모르타르 및 콘크리트의 개발 (Development of Anti-Bacteria Mortar and Concrete using Microcapsule)

  • 박석균;이병재;김기수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.519-522
    • /
    • 2003
  • In this study, we encapsulate the core materials which have long term resisting properties to the bacteria. We also try to apply those capsules to the mortar and concrete which is using for the structures and ornament materials. Various wall thickness, shape, and membrane structure of microcapsule are tested and construction properties of the mortar and concrete which contain microcapsules are examined. Finally the microcapsules with anti-bacteria which can be used for mortar and concrete are developed.

  • PDF