• Title/Summary/Keyword: Mortar

Search Result 2,741, Processing Time 0.027 seconds

The Effect of Dry Environment on Strength of Cement Mortar Immediately after Casting (성형직후 건조환경이 시멘트 모르터의 강도에 미치는 영향)

  • 오무영;김준희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.61-72
    • /
    • 1991
  • This study was carried out to research the strength drop of concrete in dry environment. The mixing ratio of cement-fine aggregate was 1: 1, 1 : 2, 1: 3 and 1 : 4. The curing was compared standard curing with dry curing immediately after casting. It is analysis of strength change by water-proof mixing. The curing age of cement mortar was 3days, 7days, l4days and 28days. The result obtained from this study are summarized as follows. 1. The compressive and bending strength change by increasing the curing age, dry curing mortar the increasing rate of strength was decreased than standard curing mortar. 2. The compressive and bending strength change in early curing, strength difference between standard curing mortar and dry curing motar was gradually closed by increasing the W/C. 3. The dry curing mortar was decreased than standard curing mortar in decreasing rate of compressive and bending strength by increasing the W/C. 4. The compressive strength of water-proof mortar in early curing, liquid water-proof mortar was shown high strength in dry curing than standard curing. The powder and liquid water-proof mortar have a small effect in dry environment. The liquid water-proof mortar was high strength without relation change of curing age in dry environment than standard curing. 5. The compressive strength of liquid water-proof mortar in poverty mix, dry curing was shown high strength than standard curing. 6. The bending strength was increased than compressive strength by decreasing the volume of cement in early curing. The increasing rate of bending strength was decreased to compressive stength by increasing the curing age.

  • PDF

A Study on the Factors Affecting the High Fluid Mortar Containing Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 함유한 고유동 모르터의 유동성상에 미치는 영향 요인에 관한 연구)

  • 김재훈;윤상천;지남용
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.29-36
    • /
    • 2002
  • High fluid concrete unlike OPC concrete is made with various material, and the phase of fresh concrete is considerably different. In order to understand fluidity phase and mix properties of high fluid concrete, concrete is required to access as suspension structure which consists of aggregate and paste. The focus of this paper is to analyze the test results and quantify the effect of mix proportions of molar and fineness modulus of ,and on the properties of fresh mortar. The effect of water-binder ratio, sand-binder ration, content; of ggbs (by mass of total cementitious materials), and various contents of water reducing agent on the yield stress and plastic viscosity of the mix is studied. Based on the experimental results, the following conclusion; can be drawn: (1) The mixing time needed (or high fluid mortar was approximately two times more than that of ordinary portland mortar. (2) The fluidity phase of mortar could be explained by yield stress of mix and the fluidity of mortar. (3) As the content of ggbs increased, yield stress of mortar was decreased and plastic viscosity of it was increased. (4) For the high fluid mortar, it was appeared that sand-binder ratio should be below 1.5.

  • PDF

Mortar Characteristics for Reinforcement of Ancient Tomb Murals Using Oyster Shells

  • Lee, Hwa Soo;Yu, Yeong Gyeong;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.295-303
    • /
    • 2018
  • The application of reinforcing agents with hydraulic property and strength development characteristics was studied under conditions similar to those of mural-painting mortar made with oyster shell powder. Reinforcement mortar made with oyster shell powder showed hydraulic properties and strength to supplement the weaknesses of natural hydraulic lime(NHL); this confirmed its possibility as a wall-reinforcing material with enough strength for preserving mural paintings. Reinforcement mortar 1 showed hydraulic property and general characteristics of lime mortar, such as consistency and viscosity, as well as lower strength and higher whiteness compared to an NHL product. For Reinforcement mortar 2, the original wall sample characteristics were reflected by mixing more shell produced through calcination; and it showed similar strength to that of Reinforcement mortar 1 as well as high whiteness. In measuring the contraction ratio of reinforcement mortar samples, Reinforcement mortar 1 and 2 showed more stability in property change compared to the NHL Group.

Properties of Shrinkage Reducing Agent and Mortar with C12A7-based Slag and Petroleum Cokes Ash (C12A7계 슬래그와 석유 코크스 연소재를 사용한 수축저감재 및 모르타르의 특성)

  • Chu, Yong Sik;Park, Soo Hyun;Seo, Sung Kwan;Park, Jae Wan
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.319-325
    • /
    • 2013
  • In this study, petroleum cokes ash and $C_{12}A_7$-based slag were used for the shrinkage reduction and strength enhancement of mortar. The hydration properties of shrinkage reduction agents were analysed. The flow, change of length and compressive strength were experimented with mortar-added shrinkage reduction agents. As a result of this study, petroleum cokes ash : $C_{12}A_7$-based slag = 60~80% : 20~40% showed excellent results. In the case of mortar with 20% $C_{12}A_7$-based slag, the setting time and change of length were similar to Ref. mortar. The flow and compressive strength were superior to Ref. mortar. In the case of mortar with a 40% $C_{12}A_7$-based slag, the setting time was longer than Ref. mortar. The compressive strength of 3 days and 7 days were superior to Ref. mortar.

Tritium radioactivity estimation in cement mortar by heat-extraction and liquid scintillation counting

  • Kang, Ki Joon;Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3798-3807
    • /
    • 2021
  • Tritium extraction from radioactively contaminated cement mortar samples was performed using heating and liquid scintillation counting methods. Tritiated water molecules (HTO) can be present in contaminated water along with water molecules (H2O). Water is one of the primary constituents of cement mortar dough. Therefore, if tritium is present in cement mortar, the buildings and structures using this cement mortar would be contaminated by tritium. The radioactivity level of the materials in the environment exposed to tritium contamination should be determined for their disposal in accordance with the criteria of low-level radioactive waste disposal facility. For our experiments, the cement mortar samples were heated at different temperature conditions using a high-temperature combustion furnace, and the extracted tritium was collected into a 0.1 M nitric acid solution, which was then mixed with a liquid scintillator to be analyzed in a liquid scintillation counter (LSC). The tritium extraction rate from the cement mortar sample was calculated to be 90.91% and 98.54% corresponding to 9 h of heating at temperatures of 200 ℃ and 400 ℃, respectively. The tritium extraction rate was close to 100% at 400 ℃, although the bulk of cement mortar sample was contaminated by tritium.

Tensile Strength of Cement Mortar using Pitch-based Carbon Fiber Derived from Oil Residues (석유피치 재활용 탄소섬유를 혼입한 모르타르의 인장 특성)

  • Rhee, Inkyu;Lee, Jun Seok;Kim, Jin Hee;Kim, Yoong Ahm;Kim, Woo
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.20-28
    • /
    • 2017
  • The direct tensile strength of the mortar specimen containing pitch-based carbon fiber was ranged between 1/27~1/22 as compared to the average compressive strength of mortar. It was found that the direct tensile strength of the mortar containing the same amount of PAN-based carbon fiber was around 1/15. While the case of the control specimen without the carbon fiber was around 1/29. One the other hands, the flexural tensile strength of the mortar containing pitch-based carbon fibers was about 1/12 as compared to the average compressive strength. In case of the mortar specimen with PAN-based carbon fiber and control mortar were 1/10 and 1/13.5, respectively. The tensile performance of the mortar with pitch-based carbon fiber was found to be intermediate between control mortar and the reinforced mortar incorporated with the PAN-based carbon fiber.

Strength Characteristics of Epoxy Resin Mortar (에폭시 수지 모르터의 강도 특성)

  • 정규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.3
    • /
    • pp.92-99
    • /
    • 1982
  • The objective of this study was to investigate the compressive and bending strength characteristics of epoxy resin mortar, which is still in an early stage of its use and study in Korea. The results obtained are summarized as follows; 1. The compressive strengths of epoxy resin mortar after 1 day, 2 days and 3 days were gained 87%, 91% and 95%, respectively, in view of that of mortar at the age of 7 days. This result showed that the initial compressive strength within 1 day was very high. 2. The highest compressive strength of epoxy resin mortar was 914 kg/cm2 at the point of having the mixing ratio of one to two. It reached up to 3.7 times that of the normal portland cement mortar at the age of 28 days. 3. The bending strengths of epoxy resin mortar after 1 day, 2 days and 3 days came up to 88%, 93% and 97%, respectively, in comparing that of mortar at the age of 7 days. It was expressed to be simielar to the tendency of compressive strength. 4. The highest bending strength of epoxy resin mortar was 384 kg/cm2 at mixing ratio of one to two. It came up to as much as 6.5 times in comparing with that of the normal portland cement mortar at the age of 28 days. Therefore, the epoxy resin mortar would be effective for promoting the bending strength of structural members. 5. The regression equation between compressive and bending strength was obtained as follows; oo~=0.391 oc+27.54 (r=0.99) And the estimated value of bending strength was corresponded to about 44 per cent in comparing with that of the compressive strength.

  • PDF

An Experimental Study on the Physical Property of Lime Mortar in the Building' Masonry (조적조 건축물의 석회 모르타르 특성에 관한 실험적 연구)

  • Kwon, Ki-Hyuk;Yu, Hye-Ran
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.133-141
    • /
    • 2009
  • 50 year-old masonry buildings which had been constructed using lime mortar have caused lots of problems because of using different material, cement mortar, when they repair them. Also, there is little information on structural capacities and details of masonry buildings built using lime mortar. In addition, it is difficult to evaluate the structural capacities of the buildings which were often constructed by untrained labors. To preserve the original masonry construction, the study on their construction materials and methodologies has to be carried out. This paper provides basic information for establishing standard details of masonry works using lime mortar in order to overcome these problems when cultural properties are repaired or retrofitted. To do this, compression tests of lime mortar were preformed with the parameters of mixing ratios, mixing material, curing time and curing conditions etc. Based on the test results, the differences between lime mortar and cement mortar were specified and the structural characteristics of lime mortar were also presented in this paper.

A Study on the Deicing Performance of Cement Mortar through the Addition of Water-repellent (발수제 혼입에 따른 시멘트 모르타르의 표면 얼음 제거성능에 관한 연구)

  • Kang, Suk-Pyo;Hong, Seong-Uk;In, Byung-Eun;Kim, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.597-606
    • /
    • 2022
  • This paper examined the effect of water repellent type and addition among various factors on the deicing performance of cement mortar surface according to incorporation. As a result, the compressive strength of the water repellentcement mortar compared to the cement mortar, and the compressive strength of the oligomer-based water repellent mortar was higher than that of the monomer-based water repellent. The contact angle of the water-repellent mortar was increased compared to the additive mortar, and the oligomer water-repellent agent compared to the monomer-based water-repellent. As a result of measuring the ice formation time of cement mortar due to the mixing of the water repellent, the ice formation was delayed until 25 minutes for mortar to which the water repellent was added. the measurement of the ice attachment load mortar without water repellent with water repellentwhen the water repellent was added to mortar, deicing performance was increased.

Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-performance Mortar (섬유복합재봉(FRP ROD)과 고강도 모르터를 이용한 철근 콘크리트 구조물의 휨 보강공법(MFRI) 공법)

  • Bae Ki-Sun;Park Sing-Hun;Lee Sang-Uk
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.59-65
    • /
    • 2005
  • This report is on the Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-Performance Mortar. The main characteristic of this system is as follow. First, the fiber rods in this system have seven times greater tensile strength than general reinforcing steel bars(re-bar) and the weight is a fifth lighter. Camels coated on the fiber rods' surfaces to improve adhesive strength and pull-out strength. Second, high strength shotcrete mortar is has very good workability and low rebound rate. After installing the Fiber Rods, Shotcrete mortar Is applied or sprayed to finish reinforcement. Finally, MFRI system has excellent fire-resisting performance and sogood tolerance against external environment by inserting fiber rods and reinforcing materials into mortar which has high compressive strength. It is applied to bridge slab, utility box and tunnel of civil engineering works, and beam and slab of building structures.