• Title/Summary/Keyword: Morphology Image Processing

Search Result 145, Processing Time 0.028 seconds

Image Segmentation Improvement by Selective Application Structuring Element of Mathematical Morphology (수리 형태학의 선택적 구조요소 적용에 의한 영상 분할의 성능 개선)

  • 오재현;김성곤;김종협;신홍규;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1972-1975
    • /
    • 2003
  • Video segmentation is an essential part in region-based video coding and any other fields of the video processing. Among lots of methods proposed so far, the watershed method in which the region growing is performed for the gradient image can produce well-partitioned regions globally without any influence on local noise and extracts accurate boundaries. But, it generates a great number of small regions, which we call over segmentation problem. Therefore we proposes image segmentation improvement by selective application structuring element of mathematical morphology.

  • PDF

Analysis of Wear Debris for Machine Condition Diagnosis of the Lubricated Moving Surface (기계윤활 운동면의 작동상태 진단을 위한 마멸분 해석)

  • Seo, Yeong-Baek;Park, Heung-Sik;Jeon, Tae-Ok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.835-841
    • /
    • 1997
  • Microscopic examination of the morphology of wear debris is an accepted method for machine condition and fault diagnosis. However wear particle analysis has not been widely accepted in industry because it is dependent on expert interpretation of particle morphology and subjective assessment criteria. This paper was undertaken to analyze the morphology of wear debris for machine condition diagnosis of the lubricated moving surfaces by image processing and analysis. The lubricating wear test was performed under different sliding conditions using a wear test device made in our laboratory and wear testing specimen of the pin-on-disk-type was rubbed in paraffine series base oil. In order to describe characteristics of debris of various shape and size, four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) have been developed and outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring, thus to overcome many of the difficulties in current methods and to facilitate wider use of wear particle analysis in machine condition monitoring.

Wavelet Image Coding Using the Significant Cluster Extraction by Morphology and the Adaptive Quantization (모폴로지에 의한 중요 클러스터 추출과 적응양자화를 이용한 웨이브릿 영상부호화)

  • 류태경;강경원;권기룡;김문수;문광석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.85-90
    • /
    • 2004
  • This paper proposes the wavelet image coding using the significant cluster extraction by morphology and the adaptive quantization. In the conventional MRWD method, the additional seed data takes large potion of the total data bits. The proposed method extracts the significant cluster using morphology to improve the coding efficiency. In addition, the adaptive quantization is proposed to reduce the number of redundant comparative operations which are indispensably occurred in the MRWD quantization. The experimental result shows that the proposed algorithm has the improved coding efficiency and computational cost while preserving superior PSNR

  • PDF

Anaylsis of Wiar Debris for Lubricated Machine surfaces by Image Processing (화상처리에 의한 윤활운동의 마멸분 해석)

  • 장정훈;박흥식;전태옥;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.563-567
    • /
    • 1996
  • This paper was undertaken to analyze the morphology of wear debris generating from moving lubricated machine surfaces by image processing. The lubricating wear test was carried out under different experimentaal conditions using the wear test device was made in our laboritory and wear testing specimen of the pin on disk type wear rubbed in paraffine series base oil, byvarying applied load, sliding distance. The four parameters(50% volumetric diameter, aspect, roundness and reflectivity) to describe the morphology have been developed and are outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring, thus overcoming many of the difficulties with current methods and facilitating wider use of wear particle analysis in machine condition monitoring.

  • PDF

Application of Fractal Dimension for Morphological Analysis of Wear Particle (마멸입자 형태해석을 위한 Fractal 차원의 적용)

  • 오동석;조연상;서영백;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.115-123
    • /
    • 1998
  • The morphological analysis of wear particle is a very effective means for machine condition monitoring and fault diagnosis. In order to describe morphology of various wear particle, the wear test was carried out under different experimental conditions. And fractal descriptors was applied to boundary and surface of wear particle with image processing system. These descriptors to analyze shape and surface wear particle are shape fractal dimension and surface fractal dimension. The shape fractal dimension can be derived from the boundary profile and surface fractal dimension can be determined by sum of intensity difference of surface pixel. The morphology of wear particles can be effectively obtained by two fractal dimensions.

  • PDF

Application of Fractal Parameter for Morphological Analysis of Wear Particle (마멸입자 형상분석을 위한 프랙탈 파라미터의 적용)

  • 조연상;류미라;김동호;박흥식
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • The morphological analysis of wear particle is a very effective means fur machine condition monitoring and fault diagnosis. In order to describe morphology of various wear particle, the wear test was carried out under friction experimental conditions. And fractal descriptors was applied to boundary and surface of wear particle with image processing. These descriptors to analyze shape and surface of wear particle are shape fractal dimension and surface fractal dimension. The boundary fractal dimension can be derived from the boundary profile and surface fractal dimension can be determined by sum of intensity difference of surface pixel. The morphology of wear particles can be effectively obtained by two fractal parameter.

Application of Fractal Parameter for Morphological Analysis of Wear Particle (마멸입자 형상분석을 위한 프랙탈 파라미터의 적용)

  • 원두원;전성재;조연상;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.30-35
    • /
    • 2001
  • The morphological analysis of wear particle is a very effective means for machine condition monitoring and fault diagnosis. In order to describe morphology of various wear particle, the wear test was carried oui under friction experimental conditions. And fractal descriptors was applied to boundary and surface of wear particle with image processing system. These descriptors to analyze shape and surface wear particle are share fractal dimension and surface fractal dimension. The boundry fractal dimension can be derived from the boundary profile and surface fractal dimension can be determined b)r sum of intensity difference of surface pixel. The morphology of wear particles can be effectively obtained by two fractal dimensions.

  • PDF

Application of Image Processing Technique to Improve Production Efficiency of Fine Pitch Hole Based on Laser (레이저 미세피치 홀 가공의 생산효율성 향상을 위한 영상처리 측정 기법 적용)

  • Pyo, C.R.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.320-324
    • /
    • 2010
  • Multi-Layer Ceramic Circuit(MLCC) in the face of thousands of fine pitch multi hole is processed. However, the fine pitch multi hole has a size of only a few micrometers. Therefore, in order to curtail the measurement time and reduce error, the image processing measurement method is required. So, we proposed an image processing measurement algorithm which is required to accurately measure the fine pitch multi hole. The proposed algorithm gets image of the fine pitch multi hole, extracts object from the image by morphological process, and extracts the parameters of its position and feature by edge detecting process. In addition, we have used the sub-pixel algorithm to improve accuracy. As a result, the proposed algorithm shows 97% test-retest measurement reliability within 2 ${\mu}m$. We found that the algorithm was wellsuited for measuring the fine pitch multi hole.

Fire Image Processing Using OpenCV (OpenCV를 사용한 화재 영상 처리)

  • Kang, Suk Won;Lee, Soon Yi;Park, Ji Wong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.79-82
    • /
    • 2009
  • In this paper, we propose new image processing method to detect fire image. At captured image from camera, we using OpenCV library to implement various image processing techniques such like differential image, binarization image, contour extraction, remove noise(morphology open, close), pixel calculation, flickering extraction, etc.

  • PDF

Improved Parallelization of Cell Contour Extraction Algorithm (개선된 세포 외곽선 추출 알고리즘의 병렬화)

  • Yu, Suk Hyun;Cho, Woo Hyun;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.740-747
    • /
    • 2017
  • A fast cell contour extraction method using CUDA parallel processing technique is presented. The cell contour extraction is one of important processes to analyze cell information in pathology. However, conventional sequential contour extraction methods are slow for a huge high-resolution medical image, so they are not adequate to use in the field. We developed a parallel morphology operation algorithm to extract cell contour more quickly. The algorithm can create an inner contour and fail to extract the contour from the concave part of the cell. We solved these problems by subdividing the contour extraction process into four steps: morphology operation, labeling, positioning and contour extraction. Experimental results show that the proposed method is four times faster than the conventional one.