• Title/Summary/Keyword: Morphology

Search Result 11,341, Processing Time 0.049 seconds

The Changes of Microstructure, Morphology, and Mechanical Properties of Solvent Treated PET POY (Partially Oriented Yarn) (폴리에스테르 부분배향사의 용매처리에 따른 내부구조 및 인장성질의 변화)

  • Shin, Hae Won;Ryu, Hyo Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.1
    • /
    • pp.63-75
    • /
    • 1993
  • Partially oriented polyester yarn (PET POY) was treated in the unrestrained state using various solvents at different temperatures. Interactions between PET POY & solvents were estimated by the changes of microstructure, morphology and mechanical properties. The correlation between the changes of microstructure & morphology and the changes of mechanical properties was also studied. TCE, Dioxane, O-DCB, DMF, and BA were found to be active solvents, while Iso-AA and water were found to be weak solvents. PET POY was affected mainly by the solvents when treated with active solvents and affected mainly by heat when treated with weak solvents. Changes by the solvent treatment in microstructure and morphology were : an increase in crystallinity, a change in birefringence, a shrinkage in length, and a change in DSC curve. As for the changes in mechanical properties, findings in the PET POY when treated with solvents were : a decrease in stress-at-break, a change in yield stress, an increase in strain-at-break & yield strain, and a decrease in initial modulus. Changes in microstructure and morphology directly affected the mechanical properties.

  • PDF

Effects of Pretreatment Method on the Bonding Strength of 4-META/MMA-TBB Resin to Bovine Dentin (상아질 전처리방법이 4-META/MMA-TBB계 레진의 접착강도가 미치는 영향)

  • 김교한;김영빈
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.533-542
    • /
    • 1995
  • The present study investigated the effectiveness of pretreatment on dentin bonding. The adhesive resin was 5% 4-methacryloyloxyethyl trimellitate anhydride (4-META) in methyl methacrylate (MMA) combined with poly-MMA powder. Polymerization of this resin was initiated by tri-n-butyl borage (TBB). Ground bovine dentin samples were etched with either an aqueous solution of 10% citric (10-0 solution) (Group I) or aqueous solution of 10% citric acid and 3% ferric chloride(10-3 solution) (Group ll ). After etching, the primer (an aqueous solution of 35% hydroxyethyl methacrylate (HEM- A) and 5% glutaraldehyde was applied on the differently etched surfaces (Group III , Group IV). The 10-0 treatment showed the lowest tensile bond strength, followed by the 10-3 treatment, primer application after the 10-0 treatment and primer application after the 10-3 treatment. The relationship among the surface morphology after pretreatment, fractured surface morphology and tensile bond strength was examined. It revealed that the surface morphology change by different pretreatment influenced the bond strength and the resulting fractured surface morphology. The correlation of tensile bond strength with the fracture morphology was explained.

  • PDF

Surface morphology, Glossiness and Hardness of Zn-Cr and Zn-Cr-X ternary alloy Electrodeposits (고속도금된 Zn-Cr 및 Zn-Cr-X 3원합금 도금층의 표면조직, 광택도 및 경도)

  • 예길촌;김대영;서경훈
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.5
    • /
    • pp.379-385
    • /
    • 2003
  • The surface morphology, the glossiness and the hardness of Zn-Cr and Zn-Cr-X(X:Co, Mn) alloy electrodeposits were investigated by using chloride bath with EDTA additive and flow cell system. The surface morphology of Zn-Cr alloy and Zn-Cr-Mn alloy changed from fine needle shape crystalline structure to colony structure of fine granular crystallites with increasing current density in the range of 20-100 $A/dm^2$. The surface morphology of Zn-Cr-Co alloy deposited from low Co concentration bath(2.5-10 g/$\ell$) was similar to that of Zn-Cr alloy, while that of Zn-Cr-Co alloy deposited from high cobalt concentration bath was fine granular crystalline structure in the same range of current density. The glossiness of Zn-Cr and Zn-Cr-Mn alloy increased noticeably with increasing current density, while that of Zn-Cr-Mn alloy decreased with increasing Mn concentration of bath in high current density region. The glossiness of Zn-Cr-Co alloy deposited from low Co concentration bath increased with current density while that of the alloy from high Co concentration bath decreased with increasing current density. The hardness of Zn-Cr and Zn-Cr-X alloy increased noticeably with current density.

A Study on the Enhancement of Corrosion Resistance of Magnesium Alloy by Dry Plasma Process (건식플라즈마 표면처리법에 의한 마그네슘 합금의 내식특성 향상)

  • Yun, Yang-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 2011
  • In these days, there are increasing demands for weight reduction in many industrial fields including marine industries. Therefore, magnesium thin films for lightweight materials were prepared on magnesium alloy substrate. The influence of gas pressure and substrate bias voltages on the crystal orientation and morphology of the films was determined by using X-ray diffraction and FE-SEM, respectively. And the effect of crystal orientation and morphology of the magnesium thin films on corrosion behavior was estimated by measuring electro-chemical anodic polarization curves in deaerated 3% NaCl solution. From the results, corrosion resistance of Mg thin films was improved by controlling the crystal orientation and morphology of the films with effective use of plasma ion plating technique.

Effect of Synthetic Temperature and Time on the Morphology of ZnO Crystals Fabricated by Thermal Evaporation of Al-Zn Mixture (Al-Zn 혼합물의 열 증발을 이용한 ZnO 결정의 합성에서 결정의 형상에 미치는 합성 온도와 시간의 영향)

  • Kim, Min-Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.265-268
    • /
    • 2015
  • ZnO micro/nanocrystals at large scale were synthesized through the thermal evaporation of Al-Zn mixtures under air atmosphere. The effect of synthetic temperature and time on the morphology of the micro/nanocrystals was examined. It was found that the temperature and time affected the morphology of the ZnO crystals. At temperatures below $900^{\circ}C$, no crystals were synthesized. At a temperature of $1000^{\circ}C$, ZnO crystals with a rod shape were synthesized. With an increase in temperature from $1000^{\circ}C$ to $1100^{\circ}C$, the morphology of the crystals changed from rod shape to wire and granular shapes. As the time increased from 2 h to 3 h at $1000^{\circ}C$, tetrapod-shaped ZnO crystals started to form. XRD patterns showed that the ZnO crystals had a hexagonal wurtzite structure. EDX analysis revealed that the ZnO crystals had high purity. It is believed that the ZnO nanowires were grown via a vapor-solid mechanism because no catalyst particles were observed at the tips of the micro/nanocrystals in the SEM images.

Study on Electronic Absorption and Surface Morphology of Double Layer Thin Films of Phthalocyanines

  • Park, Gyoo-Soon;Heo, Il-Su;Ryu, Il-Hwan;Yim, Sang-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.943-946
    • /
    • 2011
  • The electronic absorption and surface morphology evolution of two types of molecular double layer thin films, copper phthalocyanine (CuPc) layer deposited on chloro[subphthalocyaninato]boron(III) (SubPc) layer, denoted as SubPc/CuPc, and vice versa, with various thicknesses were investigated using ultraviolet (UV)-visible spectroscopy and atomic force microscopy (AFM). Both types of double layer structures showed similar broadened absorption patterns in the UV-visible region that were consistent with the fitted spectra following simple linear combination of the single layer absorption spectra of the two materials. In contrast, the surface morphology of double layer structures was dependent on the order of deposition. For the CuPc/SubPc structures, surface morphology was characterized by elongated grains, which are characteristic of SubPc thin films, indicating that the morphological influence of the underlying CuPc layer on the subsequent SubPc layer was not large. For the SubPc/CuPc structures, however, the underlying SubPc layer acted as a morphological template for the subsequently deposited CuPc layer. It was also observed that the grain size of the CuPc layer varied according to the thickness of the underlying SubPc layer.

AAO Template Morphology Controlled by Variation of Anodizing Condition (양극 산화 조건 변화에 따른 AAO Template Morphology 제어)

  • Jo, Ye-Won;Lee, Sung-Gap;Kim, Kyeong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.249-251
    • /
    • 2015
  • In this study, the application of biosensor having a large surface area for more effective and AAO (anomic aluminium oxide) template in order to gain concentration and voltage of anodizing process morphology changes to the control of experiments were conducted. The biosensor surface may increase the response characteristics by having a large surface area. So the entrance to a little more efficient wide depth sensing experiment was carried out to obtain a structure body with a branch shape with a large surface area with increasing. Experimental results from the FE-SEM observation was obtained template morphology. As a result, depending on the anodizing time, the depth of the layer of aluminum oxide was found that it was confirmed that the deepening of the pore size changes according to anodizing condition. And measuring the detection performance according to the conditions in the electrolyte and the reaction because of blood using a biosensor measuring sensing property according to the depth of the pore depth is considered that does not have a significant impact.

Effects of the Characteristics of Precursor Powders and AlF3 Flux on the Properties of Blue-Emitting BAM:Eu Phosphor Powders (전구체의 특성 및 AlF3 융제가 청색 발광의 BAM:Eu 형광체의 특성에 미치는 영향)

  • Cho, Jung-Sang;Lee, Sang-Ho;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.137-142
    • /
    • 2008
  • Blue-emitting BAM:Eu phosphor powders were formed by post-treatment of precursor powders with hollow or dense morphologies. The morphologies of the precursor powders obtained by spray pyrolysis were controlled by changing the preparation conditions and by changing the type of spray solution. The effects of the morphologies of the precursor powders on the characteristics of the BAM : Eu phosphor powders reacted with $AlF_3$ flux were investigated. Precursor powders with a spherical shape and a hollow morphology produced BAM : Eu phosphor powders with a plate-like morphology, a fine size and a narrow size distribution. On the other hand, precursor powders with a spherical shape and dense morphology produced BAM : Eu phosphor powders with a plate-like morphology and a large size. $AlF_3$ flux improved the photoluminescence intensities of the BAM : Eu phosphor powders. The photoluminescence intensity of the fine-sized BAM : Eu phosphor powders with a plate-like morphology was 90% of the commercial product under vacuum ultraviolet conditions.

Morphology control of blue-emitting BAM phosphor particles by the spray pyrolysis (분무열분해법에 의한 푸른색 발광 BAM 형광체 분말의 형태 조절)

  • 강윤찬;노현숙
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.566-569
    • /
    • 1999
  • The blue emitting BAM Phosphor Particles with various compositions were Prepared by the spray Pyrolysis. The effect of composition on the morphology of BAM particles was Investigated. In the case of BaMgAl$_{10}$ /O$_{22}$ : Eu$^{2+}$, the morphology of particles with sphericity and non-aggregation characteristics disappeared after post-treatment at 1400 $^{\circ}C$ for 3 hrs. On the other hand, the ocher composition particles except BaMgAl$_{10}$ /O$_{22}$ : Eu$^{2+}$ maintained their original morphology after post-treatment, even if the particles were prepared at low temperatures in the spray pryrolysis. The BAM particles with MgAl$_{2}$/O$_4$as intermediate material at low post-treatment temperature had high thermal stability and maintained sphericity of particles after post-treatment. All the samples had main omission peak at 450 nm, which corresponds to blue emission. The optimum post-treatment temperature of BAM:Eu$^{2+}$ particles for the maximum PL(photoluminescence) intensity in the spray pylolysis was 1200 $^{\circ}C$ because of high crystallinity, Phase-Purity, and good morphology.ology.

  • PDF

Shape Control of Gold Nanocrystal: Synthesis of Faceted Gold Nanoparticles and Construction of Morphology Diagram

  • Ahn, Hyo-Yong;Lee, Hye-Eun;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.281.1-281.1
    • /
    • 2013
  • Shape control of gold nanocrystal is still one of the most important challenges remaining to achieve geometry dependent properties. Thus far, several strategies have been developed to control the shape of nanoparticles, such as adding capping agents and diverse additives or adjusting the temperature and pH. Here, we used an already established seed-mediated method that allowed us to focus on controlling the growth stage. Cetyltrimethylammonium bromide (CTAB) and ascorbic acid (AA) were used as the ligand and the reducing agent, respectively, without using any additional additives during the growth stage. We investigated how the relative ratio of CTAB and AA concentrations could be a major determinant of nanoparticle shape over a wide concentration range of CTAB and AA. As a result, a morphology diagram was constructed experimentally that covered the growth conditions of rods, cuboctahedra, cubes, and rhombic dodecahedra. The trends in the morphology diagram emphasize the importance of the interplay between CTAB and AA. Furthermore, high-index faceted gold nanocrystal was obtained by two step seeded growth. Already synthesized cubic particles developed into hexoctahedral nanocrystal consisting of 48 identical {321} facets, which indicates that the growth of gold nanocrystal is affected by initial morphology of seed particles. The hexoctahedral gold nanoparticles can be used in catalysis and optical applications which exploiting their unique geometry. Our research can provide useful guidelines for designing various facetted geometries.

  • PDF