• Title/Summary/Keyword: Moran's I 지수

Search Result 34, Processing Time 0.021 seconds

The Changes in the Quality of Life Measure of the Seoul Metropolitan Area (수도권 삶의 질 지수 변동에 관한 연구)

  • Lee, Se-Hyung;Chang, Hoon;Rho, Jin-A
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.29-37
    • /
    • 2011
  • The purpose of this research is to measure Quality of Life indices using Factor Analysis and Principle Component Analysis and to analyze the spatial patterns of Quality of life distribution in the Seoul Metropolitan Area in terms of spatial association using spatial statistics and spatial exploratory technique. In order to check the degree of clustering, this study used spatial autocorrelation indices, global Moran's I index. In addition, local scale analysis was conducted using Moran Scatterplot and Local Moran's I to identify the spatial association pattern and the high Quality of life. The analysis based on global statics showed that, in the Seoul Metropolitan Area, QoL Indices had been distributed with positive spatial association. According to the local spatial statistics, the general tendency of clustering H-H clusters which were mainly concentrated on the Seoul, L-H clusters were concentrated on the Kyunggi-Do and L-L Clusters showed the regional extent of lagging behind. However, in case of H-H, L-H Clusters they had been spread out in the Newtown as population increase.

Application of Bivariate Spatial Association for the Quantitative Marine Environment Pattern Analysis (정량적인 해양환경패턴 분석을 위한 이변량 공간연관성 적용)

  • Hwang, Hyo-Jung;Choi, Hyun-Woo;Kim, Tea-Rim
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.155-166
    • /
    • 2008
  • The quantitative bivariate spatial pattern analysis was applied for the water quality and nutrients data of Masan Bay, and for this analysis Pearson's r as aspatial correlation measurement, Moran's I as spatial association measurement and L index as integration of aspatial and spatial measurement methods were used. To understand the aspatial and spatial characteristics implicated in L index, Pearson's r as well as Moran's I were classified into 3 types respectively, and Pearson's r and Moran's I were combined with 9 types, and also quantile of L index value was used for each of those 9 types. Finally, these types were defined as 5 groups having not overlapped L index range. According to the application result of L index groups, bivariate water quality and nutrients showed no aspatial correlation regardless of spatial association in February and July, but they showed aspatial correlation having clustered spatial pattern in May and November. The result of this study providing the guideline for the interpretation of aspatial correlation and spatial association using L index is expected to be helpful for the marine environment pattern analysis using quantitative index for further study.

  • PDF

An Analysis on the Spatial Pattern of Local Safety Level Index Using Spatial Autocorrelation - Focused on Basic Local Governments, Korea (공간적 자기상관을 활용한 지역안전지수의 공간패턴 분석 - 기초지방자치단체를 중심으로)

  • Yi, Mi Sook;Yeo, Kwan Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.29-40
    • /
    • 2021
  • Risk factors that threaten public safety such as crime, fire, and traffic accidents have spatial characteristics. Since each region has different dangerous environments, it is necessary to analyze the spatial pattern of risk factors for each sector such as traffic accident, fire, crime, and living safety. The purpose of this study is to analyze the spatial distribution pattern of local safety level index, which act as an index that rates the safety level of each sector (traffic accident, fire, crime, living safety, suicide, and infectious disease) for basic local governments across the nation. The following analysis tools were used to analyze the spatial autocorrelation of local safety level index : Global Moran's I, Local Moran's I, and Getis-Ord's G⁎i. The result of the analysis shows that the distribution of safety level on traffic accidents, fire, and suicide tends to be more clustered spatially compared to the safety level on crime, living safety, and infectious disease. As a result of analyzing significant spatial correlations between different regions, it was found that the Seoul metropolitan areas are relatively safe compared to other cities based on the integrated index of local safety. In addition, hot spot analysis using statistical values from Getis-Ord's G⁎i derived three hot spots(Samchuck, Cheongsong-gun, and Gimje) in which safety-vulnerable areas are clustered and 15 cold spots which are clusters of areas with high safety levels. These research findings can be used as basic data when the government is making policies to improve the safety level by identifying the spatial distribution and the spatial pattern in areas with vulnerable safety levels.

Application of Spatial Autocorrelation for the Spatial Distribution Pattern Analysis of Marine Environment - Case of Gwangyang Bay - (해양환경 공간분포 패턴 분석을 위한 공간자기상관 적용 연구 - 광양만을 사례 지역으로 -)

  • Choi, Hyun-Woo;Kim, Kye-Hyun;Lee, Chul-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.60-74
    • /
    • 2007
  • For quantitative analysis of spatio-temporal distribution pattern on marine environment, spatial autocorrelation statistics on the both global and local aspects was applied to the observed data obtained from Gwangyang Bay in South Sea of Korea. Global indexes such as Moran's I and General G were used for understanding environmental distribution pattern in the whole study area. LISAs (local indicators of spatial association) such as Moran's I ($I_i$) and $G_i{^*}$ were considered to find similarity between a target feature and its neighborhood features and to detect hot spot and/or cold spot. Additionally, the significance test on clustered patterns by Z-scores was carried out. Statistical results showed variations of spatial patterns quantitatively in the whole year. Then all of general water quality, nutrients, chlorophyll-a and phytoplankton had strong clustered pattern in summer. When global indexes showed strong clustered pattern, the front region with a negative $I_i$ which means a strong spatial variation was observed. Also, when global indexes showed random pattern, hot spot and/or cold spot were/was found in the small local region with a local index $G_i{^*}$. Therefore, global indexes were useful for observing the strength and time series variations of clustered patterns in the whole study area, and local indexes were useful for tracing the location of hot spot and/or cold spot. Quantification of both spatial distribution pattern and clustering characteristics may play an important role to understand marine environment in depth and to find the reasons for spatial pattern.

  • PDF

Analysis of Spatial Structure in Geographic Data with Changing Spatial Resolution (해상도 변화에 따른 공간 데이터의 구조특성 분석)

  • 구자용
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.243-255
    • /
    • 2000
  • The spatial distribution characteristics and patterns of geographic features in space can be understood through a variety of analysis techniques. The scale is one of most important factors in spatial analysis techniques. This study is aimed at identifying the characteristics of spatial data with a coarser spatial resolution and finding procedures for spatial resolution in operational scale. To achieve these objectives, this study selected LANSAT TM imagery for Sunchon Bay, a coastal wetland for a study site, applied the indices for representing scale characteristics with resolution, and compared those indices. Local variance and fractal dimension developed by previous studies were applied to measure the textual characteristics. In this study, Moran s I was applied to measure spatial pattern change of variance data which were generated from the process of coarser resolution. Drawing upon the Moran s I of variancedata was optimum technique for analysing spatial structure than those of previous studies (local variance and fractal dimension). When the variance data represents maximum Moran´s I at certainly resolution, spatial data reveals maximum change at that resolution. The optimum resolution for spatial data can be explored by applying these results.

  • PDF

Analysis of Relation Between Criminal Types and Spatial Characteristics in Urban Areas (도심지역의 범죄 종류와 공간적 특성 관계분석)

  • Cha, Gyeong Hyeon;Kim, Kyung Ho;Son, Ki Jun;Kim, Sang Ji;Lee, Dong Chang;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • In this paper, we analyzed current states and spatial characteristics of crime occurring in A city of Colombia using big data of crime. The analysis draws on the crime statistics of Colombia National Police Agency from 2013 January to September. We also investigated spatial autocorrelation of crime using global and local Moran's Index. Spatial autocorrelation analysis shows significant spatial autocorrelation in the high frequency of crime. Global Moran's I analysis indicates that there are statistically significant value of crime area. Using local Moran's Index analysis, we also implement Local Indicators of Spatial Association(LISA) map and hot spot analysis helps us identify crime distribution.

Spatial Distribution Pattern of the Populations of Camellia japonica in Busan (부산 사하구 동백나무 집단의 공간적 분포 양상)

  • Kang, Man Ki;Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.813-819
    • /
    • 2014
  • The spatial distribution of geographical distances at five natural populations of Camellia japonica in Busan, Korea was studied. The four plots (Mollundae, Gadeok-do, Du-do, and Jwiseum) of C. japonica were uniformly distributed in the forest community and only one plot (Amnam-dong) was aggregately distributed in the forest community. Morisita index is related to the patchiness index showed that the plot $20m{\times}50m$ had an overly steep slope when the area was larger than $20m{\times}20m$, which indicated that the degree of aggregation increased significantly with increasing quadrat sizes, while the patchiness indices did not change from the plot $5m{\times}10m$ to $10m{\times}10m$. The spatial structure was quantified by Moran's I, a coefficient of spatial autocorrelation. Ten of the significant values (76.9%) were positive, indicating similarity among individuals in the first 4 distance classes (80 m), i.e., pairs of individuals with dissimilarity characteristics can separate by more than 100 m.

Identifying Spatial Distribution Pattern of Water Quality in Masan Bay Using Spatial Autocorrelation Index and Pearson's r (공간자기상관 지수와 Pearson 상관계수를 이용한 마산만 수질의 공간분포 패턴 규명)

  • Choi, Hyun-Woo;Park, Jae-Moon;Kim, Hyun-Wook;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.391-400
    • /
    • 2007
  • To identify the spatial distribution pattern of water quality in Masan Bay, Pearson's correlation as a common statistic method and Moran's I as a spatial autocorrelation statistics were applied to the hydrological data seasonally collected from Masan Bay for two years ($2004{\sim}2005$). Spatial distribution of salinity, DO and silicate among the hydrological parameters clustered strongly while chlorophyll a distribution displayed a weak clustering. When the similarity matrix of Moran's I was compared with correlation matrix of Pearson's r, only the relationships of temperature vs. salinity, temperature vs. silicate and silicate vs. total inorganic nitrogen showed significant correlation and similarity of spatial clustered pattern. Considering Pearson's correlation and the spatial autocorrelation results, water quality distribution patterns of Masan Bay were conceptually simplified into four types. Based on the simplified types, Moran's I and Pearson's r were compared respectively with spatial distribution maps on salinity and silicate with a strong clustered pattern, and with chlorophyll a having no clustered pattern. According to these test results, spatial distribution of the water quality in Masan Bay could be summed up in four patterns. This summation should be developed as spatial index to be linked with pollutant and ecological indicators for coastal health assessment.

Selecting Target Sites for Non-point Source Pollution Management Using Analytic Hierarchy Process (계층분석적 의사결정기법을 이용한 비점원오염 관리지역의 선정)

  • Shin, Jung-Bum;Park, Seung-Woo;Kim, Hak-Kwan;Choi, Ra-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.976-980
    • /
    • 2007
  • 본 논문에서는 비점원오염 관리를 위한 지역선정을 위하여 계층분석적 의사결정기법에 의한 접근 방법을 제시하였다. 주어진 유역 내에서의 비점원오염의 중요기여 인자간의 관계를 반영한 것이 본 연구의 특징이다. 주요인자로는 경사도, 유달거리, 유효강우비, 불투수면적비, 토양유실량이다. 각 인자의 가중치는 계층분석적 의사결정기법(AHP)으로 구하였으며 각 인자의 가중값과 속성 값의 단순 부가가중 합으로 표현되는 비점원오염 영향지수를 정의하였다. 높은 영향지수를 가지는 지역을 비점원오염 관리지역으로 제안하였으며, 시험유역으로 발안HP#6유역을 선정하여 적용해보았다. 관리지역 결과를 비교하기 위하여 AGNPS 모의를 통한 비점원오염 부하량간의 분석을 시도하였다. 비교 및 분석을 위해 Moran's I를 이용하였으며, T-N은 $0.38{\sim}0.45$, T-P는 $0.15{\sim}0.22$의 범위를 보였다. 이는 두 접근 방법이 상이함에도 공간적으로 유사한 경향을 보인다는 것을 말한다. 본 연구에서 제시하는 방법은 비점원오염 관리지역 선정에 있어서 적용가능 함을 의미한다.

  • PDF

An Analysis on Characteristics of Spatial Distribution of the Atopic Dermatitis Patients : With an Application of the Moran Indices (아토피 피부염 환자 발병률의 지역적 특성 분석 - 모란지수 방법을 활용하여 -)

  • Lim, Dong Pyo;Jeong, Hwan Yeong
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.3
    • /
    • pp.583-592
    • /
    • 2015
  • As the increase of an environmental disease has become a social problem after industrialization, academic interest in a spatial difference and characteristics of an environmental disease is on rise. The purpose of this study is to analyze the spatial distribution and characteristics of an environmental disease using the data provided by National Health Insurance Corporation in 2009. This research is focusing on atopic dermatitis among a variety of environmental diseases and shows the map that atopic dermatitis patients are distributed. Also, The Local Moran's I show how spatial autocorrelation of atopic dermatitis patients are distributed. First, the distribution of atopic dermatitis patients show the spatial difference. Second, 42 places including the western part of Incheon are hot spots of atopic dermatitis. Third, 39 places including Danyang are cold spot of atopic dermatitis. Forth, Jeju-si and Seogwipo-si are unusually hot spot of atopic dermatitis. These results have important implications that further research need to be done in public health geography.

  • PDF