• Title/Summary/Keyword: Mooring tension 계류삭 장력

Search Result 14, Processing Time 0.02 seconds

Motion of Cylindrical Buoy and Its Mooring Line Tension by Installation Depth under the Action of Waves (부설 수심의 변화에 따른 파랑 중 원통형 부체의 운동 및 계류삭 장력 해석)

  • Kim, Tae-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.360-366
    • /
    • 2004
  • This paper presents a method analyzing the motion of cylindrical buoy moored at 2 points and tensions action on each mooring line under the action of periodic waves. It was found that submersible buoy was more effective than floating one in the severe conditions considering its dynamic motions, wave forces, and mooring line tensions. The wave induced its dynamic responses and mooring line tensions peak when the ratio d/${\lambda}$ of the buoy length d to the waves length ${\lambda}$ was 0.66 due to its natural frequency. The results of this study were in agreement with the existing measurement ones, however, further verifications are needed considering resonance of cylindrical buoy and its displacements to wave height by a series of model tests.

Analysis of Motions and Moorings of a Berthed Ship (정박된 선박의 운동 및 계류력 분석)

  • Jo, Chul-Hee;Chung, Kwang-Sic
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.204-208
    • /
    • 2002
  • Mooring is the operation of securing a ship to a wharf or quay by means of rapes or chains. A. moored ship need not necessarily be truly stationary. It may be free to rise and fall with the tick or the loading and unloading of cargo or to oscillate in response to the action of the environmental forces. In this respect a moored ship is restricted to a limited amount of movement within well-defined bounds. This study is intended to analyze the tension of mooring lines by a FEM program, as the current velocities and working directions are varied. The motion of a berthed ship is studied concerning with the wave periods and the direction. Also the behavior of the modeled vessel are investigated for a berthed condition.

  • PDF

Analysis of Effects of Mooring Connection Position on the Dynamic Response of Spar type Floating Offshore Wind Turbine (계류장치 연결 위치가 Spar Type 부유식 해상풍력 발전기의 동적 응답에 미치는 영향 해석)

  • Cho, Yanguk;Cho, Jinrae;Jeong, Weuibong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.407-413
    • /
    • 2013
  • This paper deals with the analysis of dynamic characteristics of mooring system of floating-type offshore wind turbine. A spar-type floating structure which consists of a nacelle, a tower and the platform excepting blades, is used to model the floating wind turbine and connect three catenary cables to substructure. The motion of floating structure is simulated when the mooring system is attached using irregular wave Pierson-Moskowitz model. The mooring system is analyzed by changing cable position of floating structure. The dynamic behavior characteristics of mooring system are investigated comparing with cable tension and 6-dof motion of floating structure. These characteristics are much useful to initial design of floating-type structure. From the simulation results, the optimized design parameter that is cable position of connect point of mooring cable can be obtained.

A Study on the Global Motion Performance of Floater and Mooring Due to Arrangement of Detachable Mooring System (탈착형 계류시스템 배치에 따른 부유식 해양구조물의 운동 및 계류성능에 관한 연구)

  • Kangsu Lee;Hyun-Sung Kim;Byoung Wan Kim
    • Journal of Wind Energy
    • /
    • v.14 no.2
    • /
    • pp.26-33
    • /
    • 2023
  • In this study, the global response characteristics of floater and mooring for floating offshore wind turbine with a detachable mooring system are performed. Global motion and structural response result extracted from the coupled motion analysis of 10MW DTU floating offshore wind turbine with detachable mooring system modeled by high-order boundary element model and finite element mesh, were used to study the characteristics of tension on mooring lines subjected to three different types of ocean loads. Breaking limit of mooring line characterized by wind, current and wave load has a major effect on the distribution of mooring tension found in time domain analysis. Based on the numerical results of coupled motion analysis, governing equation for calculating the motion response of a floater under ocean loads, and excitation force and surge motion and tension respectively are presented using excursion curve. It is found that the response of floater is reliable and accurate for calculating the tension distributions along the mooring lines under complex loadings. This means that the minimun breaking limit of mooring system satisfied a design criteria at ultimate ocean environmental loading condtions.

Study on Optimization of Design Parameters for Offshore Mooring System using Sampling Method (샘플링 기법을 통한 계류 시스템 설계 변수 최적화 방안에 관한 연구)

  • Kang, Soo-Won;Lee, Seung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.215-221
    • /
    • 2018
  • In this study, the optimal design of a mooring system was carried out. Unlike almost all design methods, which are based on the deterministic method, this study focused on the probabilistic method. The probabilistic method, especially the design of experiment (DOE), could be a good way to cover some of the drawbacks of the deterministic approach. There various parameters for a mooring system, as widely known, including the weight, length, and stiffness of line. Scenarios for the mooring system parameters were produced using the Latin Hypercube Sampling method of the probabilistic approach. Next, a vessel-mooring system coupled analysis was performed in Orcaflex. A total of 50 scenarios were used in this study to optimize the initial design by means of a genetic algorithm. Finally, after determining the optimal process, a reliability analysis was performed to understand the system validity.

The Design Development on the Mooring System of a Floating Barge Positioned in the Shallow Water Zone (천해역에 위치한 바지형 부유체의 계류시스템 설계)

  • Kim, Young-Bok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.364-371
    • /
    • 2015
  • This study is aimed to develop the dynamic analysis technique for a floating aquaculture in a shallow water region under the harsh sea condition. In case of the installation region to transform from a coastal area to the offshore area, the influence of sea bed with sea waves on the mooring lines was announced to be significant by other authors. In this study, the numerical tool was developed to solve dynamic behavior of the floating barge coupled with mooring lines in a shallow zone of the sea considering the influence of sea bed on the floating system.

Design of Oceanography Buoy - Part II: Mooring System (해양관측용 부이의 설계 건전성 평가 - Part II: 계류시스템 구조건전성 평가)

  • Keum, Dong-Min;Kim, Tae-Woo;Han, Dae-Suk;Lee, Won-Boo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The purpose of the present study was to evaluate the safety under extreme environmental conditions and the dynamic safety under service environment conditions, of oceanographic buoy mooring systems consisting of a variety of materials, including chain, wire rope, nylon rope, and polypropylene rope. For the static safety assessment of a mooring system, after the calculation of external forces and the division of a mooring system into finite elements, the numerical integral was conducted to yield the elemental static tension until satisfying the geometrical convergence condition. To evaluate the dynamic safety, various processes were considered, including data collection about the anticipated areas for mooring, a determination of the parameters for the interpretation, the interpretation of the dynamic characteristics based on an analytic equation that takes into account the heave motion effect of a buoy hull and a mooring system, and a fatigue analysis of the linear cumulative damage. Based on the analysis results, a supplementary proposal for a wire rope that has a fracture in an actual mooring area was established.

Behavior Analysis and Control of a Moored Training Ship in an Exclusive Wharf (전용부두 계류중인 실습선의 선체거동 해석 및 제어에 관한 연구)

  • Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.139-145
    • /
    • 2017
  • Recently, gusts, typhoon and tsunamis have been occurring more frequently around the world. In such an emergency situation, a moored vessel can be used to predict and analyze other vessel behavior, but if the mooring system is destroyed, marine casualties can occur. Therefore, it is necessary to determine quantitatively whether a vessel should be kept in the harbour or evacuate. In this study, moored ship safety in an exclusive wharf according to swell effects on motion and mooring load have been investigated using numerical simulations. The maximum tension exerted on mooring lines exceeded the Safety Working Load for intervals 12 and 15 seconds. The maximum bollard force also exceeded 35 tons (allowable force) in all evaluation cases. The surge motion criteria result for safe working conditions exceeded 3 meters more than the wave period 12 seconds with a wind speed of 25 knots. As a result, a risk rating matrix (risk category- very high risk, high risk and moderate risk) was developed with reference to major external forces such as wind force, wave height and wave periods to provide criteria for determining the control of capabilities of mooring systems to prevent accidents.

Offshore Platform Installation Simulation Using Real-Time Maneuvering and Operation Simulator (Real-Time 조종 및 작업 시뮬레이터를 활용한 해양구조물 설치 작업 시뮬레이션)

  • Jonghyeon Lee;Solyoung Han;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.67-75
    • /
    • 2023
  • In this study, the dynamic characteristics of an offshore platform being installed and physical phenomena are analyzed from the perspective of interaction between operation and maneuvering simulation using a real-time Maneuvering & Operation simulator of Shipbuilding & Marine Simulation Center at Tongmyong University. It was simulated to install the semi-submersible drilling rig moored by 8 mooring lines according to a scenario that is similar to it on the real sea, and 4 tug boats for position keeping of the rig and an offshore support vessel for hook-up of the mooring lines were operated. During the simulation, the motion, trajectory, tension of the objects were output in real time, and they were analyzed at each work procedure. This study about the simultaneous simulation of operation and maneuvering showed the detailed motion of the offshore platform and ships on the operation procedure and the interaction between operation and maneuvering in specific environment condition. Also, it confirmed that the simulation can be utilized to determine the possibility of offshore platform installation in specific situations.