• Title/Summary/Keyword: Mooring system

Search Result 351, Processing Time 0.079 seconds

The Strength Analysis of Mooring winch according to the division angle (무어링 윈치의 분할각도에 따른 강도해석)

  • Ha, Jeong-Min;Han, Dong-Seup;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.775-780
    • /
    • 2010
  • In the machinery, the brake system is as important part as machine's working. The situation of emergency stop, the machine doesn't stopped would be occur big accident. This is common things for all of machinery, also for the ships. There are two kind of mooring devices are existed on the ship. One of them, the windlass winch, is used to anchor. The other, the mooring winch is used to moor the ship in pier use the rope tied to bitt on dock. In case of previously been used mooring winch made of a steel plate, and the bolt which was connect brake band and lining broken. In this study, prevent an accident find the position of stress concentration by finite element analysis program. And removed stress concentration. And search the optimum position of the separation angle to be more efficient.

Numerical model of a tensioner system and riser guide

  • Huang, Han;Zhang, Jun;Zhu, Liyun
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.257-273
    • /
    • 2013
  • Top tensioned riser (TTR) is often used in a floating oil/gas production system deployed in deep water for oil/gas transport. This study focuses on the extension of the existing numerical code, known as CABLE3D, to allow for static and dynamic simulation of a TTR connected to a floating structure through a tensioner system or buoyancy can, and restrained by riser guides at different elevations. A tensioner system usually consists of three to six cylindrical tensioners. Although the stiffness of individual tensioner is assumed to be linear, the resultant stiffness of a tensioner system may be nonlinear. The vertical friction between a TTR and the hull at its riser guide is neglected assuming rollers are installed there. Near the water surface, a TTR is forced to move horizontally due to the motion of the upper deck of a floating structure as well as related riser guides. The extended CABLE3D is then integrated into a numerical code, known as COUPLE, for the simulation of the dynamic interaction among the hull of a floating structure, such as spar or TLP, its mooring system and riser system under the impact of wind, current and waves. To demonstrate the application of the extended CABLE3D and its integration with COUPLE, the numerical simulation is made for a truss spar under the impact of Hurricane "Ike". The mooring system of the spar consists of nine mooring lines and the riser system consists of six TTRs and two steel catenary risers (SCRs).

Dynamic responses of an FPSO moored on sloped seabed under the action of environmental loads

  • Roy, Shovan;Banik, Atul K.
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.329-343
    • /
    • 2018
  • The inclination of seabed profile (sloped seabed) is one of the known topographic features which can be observed at different seabed level in the large offshore basin. A mooring system connected between the platform and global seabed is an integral part of the floating structure which tries to keep the floating platform settled in its own position against hostile sea environment. This paper deals with an investigation of the motion responses of an FPSO platform moored on the sloped seabed under the combined action of wave, wind and current loads. A three-dimensional panel discretization method has been used to model the floating body. To introduce the connection of multi-segmented non-linear elastic catenary mooring cables with the sloped seabed, a quasi-static composite catenary model is employed. The model and analysis have been completed by using hydrodynamic diffraction code AQWA. Validation of the numerical model has been successfully carried out with an experimental work published in the latest literature. The analysis procedure in this study has been followed time domain analysis. The study involves an objective oriented investigation on platform motions, in order to identify the effects of the slopped seabed, the action of the wave, wind and current loads and the presence of riser system. In the end, an effective analysis has been performed to identify a stable mooring model in demand of reducing structural responses of the FPSO.

The Evaluation of Ship Motions in a Harbor along the Entrance Channel by Field Observation

  • Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.9
    • /
    • pp.777-782
    • /
    • 2005
  • Maritime transportation consists of various situations such as navigation in the ocean, ship handling at harbor entrances, cargo handling and mooring in harbors. Generally, ships are built for the purpose of currying people and materials upon the seas. In order to accomplish the mission, a ship must be built to withstand the rigors of heavy weather and waves. In particular, the safety of ship motions at the entering/departing harbor and mooring under the effects of waves is very important for ship operation from the viewpoint of marine engineering. Therefore, safety and efficiency during entrance, departure, and mooring are extremely important aspects in the evaluation of ship operations from viewpoints of ship motions. However, the ship motions near a harbor entrance are not observed or studied as much. In this paper, to evaluate the difficulty of ship operations, field observations were performed using a new observation system with high accuracy in typhoon seasons, and grasp was done concerning about the time series characteristic that ship motions change rapidly within a harbor. Namely, such observations enable the quantitative safety evaluation under the effects of waves during ships entering and departing harbors in heavy weather.

Structural and Fatigue Strength Evaluation of a Fairlead Chain Stopper for Floating Offshore Wind Turbines (10 MW급 부유식 해상풍력장치용 패어리드 체인스토퍼의 구조 및 피로 강도 평가)

  • Youngjae Yu;Sanghyun Park;Youngsik Jang;Sangrai Cho
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.5-12
    • /
    • 2023
  • In this study, a structural and fatigue strength evaluation of the Fairlead Chain Stopper (FCS) was performed as a part of the development of a disconnectable mooring system to be applied to 10MW floating offshore wind power generation systems. To estimate the load acting on the FCS, a 10 MW semi-submersible floater was designed using the 10 MW wind turbine developed by Technical University of Denmark(DTU). The minimum breaking load (MBL) of the grade R5 and 147mm mooring chain was applied for the FCS strength analysis. The fatigue load was obtained from the coupled analysis results conducted by a collaborating research institute. The structural and fatigue safety of FCS were evaluated in accordance with DNV codes. From the evaluation results, it was confirmed that the FCS satisfies the structural and fatigue safety requirements.

Dynamic Analysis of Guyed Tower Subjected to Wave Forces (파랑하중에 대한 Guyed Tower의 동적해석)

  • Ryu, Jung Sun;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.87-94
    • /
    • 1985
  • Dynamic analysis of guyed tower is presented in this paper. The scope of the study is twofold. The one is to determine an efficient analysis method to include the nonlinearity of the mooring system and the nonlinear hydrodynamic wave forces. The other is to investigate the sensitivity of two major design parameters, that is the stiffness of mooring system and the fixity condition of the tower at mud line. Time history analysis method utilizing mode superposition is mainly considered. However several other methods are also used for the purpose of comparison. Analyses are carried out using the Lena Guyed Tower, which is the first structure of this kind, as a standard structure.

  • PDF

Dynamical Analysis of the Mooring Vessel System Under Surge Excitations (선박 계류시스템의 종방향 외력하의 비선형 동적거동 해석)

  • Lee, Sang-Do;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.140-145
    • /
    • 2018
  • This paper deals with the dynamical analysis of a two-point mooring vessel under surge excitations. The characteristics of nonlinear behaviors are investigated completely including bifurcation and limit cycle according to particular input parameter changes. The strong nonlinearity of the mooring system is mainly caused by linear and cubic terms of restoring force. The numerical simulation is performed based on the fourth order Runge-Kutta algorithm. The bifurcation diagram and several instability phenomena are observed clearly by varying amplitudes as well as frequencies of surge excitations. Stable periodic solutions, called the periodic windows, can be obtained in succession between chaotic clouds of dots in case of frequency ${\omega}=0.4rad/s$. In addition, the chaotic region is unexpectedly increased when external forcing amplitude exceeds 1.0 with the angular frequency of ${\omega}=0.7rad/s$. Compared to the cases for ${\omega}=0.4$, 0.7rad/s, the region of chaotic behavior becomes more fragile than in the case of ${\omega}=1.0rad/s$. Finally, various types of steady states including sub-harmonic motion, limit cycle, and symmetry breaking phenomenon are observed in the two-point mooring system at each parameter value.

Nonlinear Subgrade Reaction Analysis of the Soil-Pile System for Mooring Dolphin Structures (계류식 돌핀구조물에 대한 지반-말뚝계의 비선형 지반반력 해석)

  • 오세붕;이진학;이상순;김동수;정태영
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.3-16
    • /
    • 1999
  • The objective of BMP( Barge Mounted Plant) project is to construct plants on mooring floating structures at sea. To analyze the pile behavior under mooring dolphins, generally, axial or lateral behavior of soil-pile system is evaluated by using a nonlinear subgrade reaction method which models the pile as a structural element and the soil as series of nonlinear springs along the depth. As a result, load-displacement curves at pile head can be solved by finite difference method and the equivalent stiffness of bottom boundaries of dolphin structure is evaluated. In this study off-shore site investigation was performed on the marine area of Koje Island and axial and lateral load transfer curves of the ground were modeled with depth. The subgrade reaction analysis was performed for piles under axial or lateral loadings, and the required penetration depth and section of the pile were determined. Subsequently, the spring boundaries under the dolphin structure could be modeled from the calculated load-displacement curve and then the dynamic response of the dolphin structure was analyzed reasonably by considering ground conditions. The analysis considering the stiffness of the soil-pile system has resulted in larger displacement amplitudes than those for rigid foundations. Furthermore, moment distributions of the casing were dependent on the soil-pile system so that deformable foundation induces the larger moment of top section of casing and the smaller moment of pile head.

  • PDF

Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion (수중폭발에 의한 해중터널의 동적거동)

  • Hong, Kwan-Young;Lee, Gye-Hee;Lee, Seong-Lo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.215-226
    • /
    • 2018
  • In this paper, to estimate the dynamic behavior of a submerged floating tunnel(SFT) by underwater explosion(UE), the SFT is modeled and analyzed by the explicit structural analysis package LS-DYNA. The section of SFT near to explosion point is modeled to shell and solid elements using elasto-plasticity material model for concrete tubular section and steel lining. And the other parts of the SFT are modeled to elastic beam elements. Also, mooring lines are modeled as tension-only cable elements. Total mass of SFT is including an added mass by hydrodynamic effect. The buoyancy on the SFT is considered in its initial condition using a dynamic relaxation method. The accuracy and the feasibility of the analysis model aree verified by the results of series of free field analysis for UE. And buoyancy ratio(B/W) of SFT, the distance between SFT and an explosion point and the arrangement of mooring line aree considered as main parameters of the explosion analysis. As results of the explosion analysis, the dynamic responses such as the dent deformation by the shock pressure are responded less as more distance between SFT and an explosion point. However, the mooring angle of the diagonal mooring system can not affect the responses such as the horizontal displacement of SFT by the shock pressure.

Initial Design of Offshore Floating Marina System (해상 부유식 마리나의 초기설계)

  • Chung H.;Oh T. W.;Namgoong S.;Kim S. B.;Jo C. H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.108-113
    • /
    • 2004
  • Marinas are often located in prime port side locations. hi Korea these locations are already developed and reclamation of the existing properties poses many difficulties and financial overhead. Also, to develop a standard marina in Korea with tide ranges up to 6 meters would require considerable dredging and reclamation works needing long lead times and large SOC costs. The Ocean Space's floating marina system is an independent offshore floating static level system that does not require fixed location breakwaters. The entire marina floats with the tide giving a calm consistent berthing condition for vessels irrespective of the surrounding tide and weather conditions. The floating marina system provides also for all of functions needed to marina comprising a breakwater to protect the vessels, the pontoon system to house the vessels, a dub house and retail tourism precinct, fuel reservoir and associated support facilities in a turn key self contained unit. The modular nature of the system will mean that initial demand can be met with simple units and then further modules can be added quite easily without the related expansion difficulties or infrastructure. This paper contains the main characteristics of the floating marina system and tire design process of the structure. The mooring, motion & stability analysis, the overall & local structural design and the mooring & anchor system design are introduced in this paper.

  • PDF