• 제목/요약/키워드: Mooring Design

검색결과 224건 처리시간 0.028초

선체 운동 평가를 위한 다기능 계측시스템 개발에 관한 연구 (A Study On the Development of Multi-Purpose Measurement System for the Evaluation of Ship Dynamic Motion)

  • 이윤석;김철승;공길영;송재욱;엄필용
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1155-1160
    • /
    • 2005
  • In order to evaluate the safety of navigation at sea and the safety of mooring ship on berthing, it is necessary that the wave and wind induced ship dynamic motion should be measured in real time domain for the validity of theoretical evaluation method such as sea-keeping performance and safety of mooring. In this paper, the basic design of sensors is discussed and some system configurations were shown. The developed system mainly consists of 4 kinds of sensors such as three dimensional accelerator, two dimensional tilt sensor, two displacement sensors and azimuth sensor. Using the this measuring system, it can be obtained the 6 degrees of freedom of ship dynamic motions at sea and on berthing such as rolling, pitching, yawing, sway, heave, surge under the external forces.

  • PDF

Semi-resolution Practicability of Three-Dimensional Statics of Cables from Computer Programs

  • Dodaran, Asgar Ahadpour;Park, SangKil
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.1-6
    • /
    • 2012
  • The purpose of this paper is to present a rational method for analyzing, designing, or evaluating the spread mooring systems used with floating drilling units. This paper presents a validated model to calculate the catenary static configuration. A semi-resolution approach is presented in this paper that is capable of predicting the static performance of a caisson mooring system. The solution is derived as a function of only three parameters, which can be solved numerically by implementing different kinds of boundary conditions. The efficiency and accuracy of the method permit quick parametric studies for the optimal selection of the system particle, which is undoubtedly useful for a preliminary design. A number of numerical examples demonstrate the validity of the adopted approach. The paper contains a complete description of the test cases and reports the results in such a way that it can provide a "benchmark" test for users and programmers of computer codes for flexible riser analysis.

주파수 의존형 LQR 설계법에 의한 무어링 윈치 제어시스템 설계 (Mooring Winch Control System Design Based on Frequency Dependent LQR Control Approach)

  • 구자삼;김영복
    • 한국항해항만학회지
    • /
    • 제38권1호
    • /
    • pp.29-37
    • /
    • 2014
  • 본 논문에서는 무어링윈치시스템 제어를 위한 제어계 설계법에 대해 고찰하고 있다. 특히 무어링윈치의 동적운전이 로우프에 부가하는 급격한 부하변동을 억제함으로써 로우프 피로하중을 감소시키고 선박운동제어에 있어서의 바람직한 제어성능을 달성할 수 있도록 하는 제어기 설계법을 제안하고 있다. 최적제어이론에 기반하여, 평가함수에 주어지는 중량행렬(weighting matrix)에 주파수 특성을 부여함으로써, 고주파 모드가 포함된 제어입력이 불안전한 특성을 여기시키지 않도록 하는 것이 제어기 설계 목표이며, 이것은 곧 로우프에 급격한 부하변동을 발생시키지 않게 되는 결과를 얻게 된다. 설계된 제어기는 저차이면서도 외란에 대한 강인성 뿐 만 아니라 제어성능 또한 보장하는 유용한 기법이며 시뮬레이션 및 실험을 통해 그 유효성을 검증하고 있다.

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

해상 부유식 마리나의 초기설계 (Initial Design of Offshore Floating Marina System)

  • 정현;오태원;남궁성;김상배;조철희
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.108-113
    • /
    • 2004
  • Marinas are often located in prime port side locations. hi Korea these locations are already developed and reclamation of the existing properties poses many difficulties and financial overhead. Also, to develop a standard marina in Korea with tide ranges up to 6 meters would require considerable dredging and reclamation works needing long lead times and large SOC costs. The Ocean Space's floating marina system is an independent offshore floating static level system that does not require fixed location breakwaters. The entire marina floats with the tide giving a calm consistent berthing condition for vessels irrespective of the surrounding tide and weather conditions. The floating marina system provides also for all of functions needed to marina comprising a breakwater to protect the vessels, the pontoon system to house the vessels, a dub house and retail tourism precinct, fuel reservoir and associated support facilities in a turn key self contained unit. The modular nature of the system will mean that initial demand can be met with simple units and then further modules can be added quite easily without the related expansion difficulties or infrastructure. This paper contains the main characteristics of the floating marina system and tire design process of the structure. The mooring, motion & stability analysis, the overall & local structural design and the mooring & anchor system design are introduced in this paper.

  • PDF

수평가진에 의한 계류라인의 장력응답 해석 (Analysis on Tension Response of Mooring Line by Lateral Excitation)

  • 정동호;김현주;문덕수;박한일;최학선
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제7권4호
    • /
    • pp.185-191
    • /
    • 2004
  • 계측주라인은 부체를 일정 위치에 유지시키기 위한 구조요소로 이용된다 본 연구에서는 부소파제의 계류라인으로 사용되는 체인에 대한 동적거동 특성을 파악하기 위해서 체인에 대한 구조해석을 수행하였다. 먼저 체인에 대한 3차원 동적방정식을 유도하는데, 장력이 0부근인 영역에서 복원력을 표현하기 위하여 굽힘강성 성분을 포함시켰다. 수치적인 방법 통하여 3차원 동적 방정식을 해석하였다. 유한차분법을 적용하였는데, 조건에 상관없이 안정적인 음해법과 함께 비선형 해법인 뉴톤-랍슨 반복법을 사용하였다. 본 연구를 통하여 가진 주기에 따른 계류라인의 위치에 따른 장력응답 경향을 파악할 수 있었으며, 본 연구의 해석결과는 참고문헌의 실험결과와 그 경향이 잘 일치하였다. 본 연구결과는 향후 부소파제를 위한 계류라인 설계에 잘 이용될 수 있을 것이다.

  • PDF

무어링 윈치의 분할각도에 따른 강도해석 (The Strength Analysis of Mooring winch according to the division angle)

  • 하정민;한동섭;한근조
    • 한국항해항만학회지
    • /
    • 제34권10호
    • /
    • pp.775-780
    • /
    • 2010
  • 기계장치에 있어서 브레이크 시스템은 기계의 안전상 동작만큼이나 중요한 부분이다. 기계를 급히 정지시켜야하는 비상시에 기계가 멈추지 않으면 큰 사고로 발전할 수 있기 때문이다. 이것은 모든 기계장치에서 공통된 사항이며, 선박에서 또한 마찬가지이다. 선박에는 2종류의 계류장치가 존재한다. 그 중 하나는 항해하는 선박을 근해에 정박시키기 위해서는 해저에 닻을 내리는 윈드라스 윈치이며, 또 다른 하나는 배를 항구에 계류시키기 위한 무어링 윈치이다. 그 중 기존에 사용하는 무어링 윈치의 경우, 브레이크 밴드가 하나의 철판으로 만들어져 있으며, 브레이크 밴드와 라이닝을 연결하는 볼트의 파손이 발생하게 된다. 본 연구에서는 이 파손을 방지하기 위해 유한요소해석 프로그램을 사용하여 응력이 집중되는 부위를 선정하였고, 이 부위를 분리하여 응력 집중을 해소하였다, 또한 이 분리지점의 각도에 따른 해석을 수행하여 최적의 위치를 선정하였다.

Hydrodynamic interactions and coupled dynamics between a container ship and multiple mobile harbors

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.217-228
    • /
    • 2012
  • As the size of container ships continues to increase, not many existing harbors can host the super-container ship due to its increased draft and the corresponding dredging requires huge budget. In addition, the minimization of waiting and loading/offloading time is the most important factor in harbor competitiveness. In this regard, mobile-harbor concept has been developed in Korea to achieve much improved harbor capacity and efficiency. In developing the concept, one of the most important elements is the operability of crane between two or more floating bodies in side-by-side arrangement. The container ship is to be stationed through a hawser connection to an outside-harbor fixed-pile station with the depth allowing its large draft. The mobile harbors with smart cranes are berthed to the sides of its hull for loading/offloading containers and transportation. For successful operation, the relative motions between the two or more floating bodies with hawser/fender connections have to be within allowable range. Therefore, the reliable prediction of the relative motions of the multiple floating bodies with realistic mooring system is essential to find the best hull particulars, hawser/mooring/fender arrangement, and crane/docking-station design. Time-domain multi-hull-mooring coupled dynamic analysis program is used to assess the hydrodynamic interactions among the multiple floating bodies and the global performance of the system. Both collinear and non-collinear wind-wave-current environments are applied to the system. It is found that the non-collinear case can equally be functional in dynamics view compared to the collinear case but undesirable phenomena associated with vessel responses and hawser tensions can also happen at certain conditions, so more care needs to be taken.

Systematic comparisons among OpenFAST, Charm3D-FAST simulations and DeepCWind model test for 5 MW OC4 semisubmersible offshore wind turbine

  • Jieyan Chen;Chungkuk Jin;Moo-Hyun Kim
    • Ocean Systems Engineering
    • /
    • 제13권2호
    • /
    • pp.173-193
    • /
    • 2023
  • Reliable prediction of the motion of FOWT (floating offshore wind turbine) and associated mooring line tension is important in both design and operation/monitoring processes. In the present study, a 5MW OC4 semisubmersible wind turbine is numerically modeled, simulated, and analyzed by the open-source numerical tool, OpenFAST and in-house numerical tool, Charm3D-FAST. Another commercial-level program FASTv8-OrcaFlex is also introduced for comparison for selected cases. The three simulation programs solve the same turbine-floater-mooring coupled dynamics in time domain while there exist minor differences in the details of the program. Both the motions and mooring-line tensions are calculated and compared with the DeepCWind 1/50 scale model-testing results. The system identification between the numerical and physical models is checked through the static-offset test and free-decay test. Then the system motions and mooring tensions are systematically compared among the simulated results and measured values. Reasonably good agreements between the simulation and measurement are demonstrated for (i) white-noise random waves, (ii) typical random waves, and (iii) typical random waves with steady wind. Based on the comparison between numerical results and experimental data, the relative importance and role of the differences in the numerical methodologies of those three programs can be observed and interpreted. These comparative-study results may provide a certain confidence level and some insight of potential variability in motion and tension predictions for future FOWT designs and applications.

LiDAR가 탑재된 계류된 부유식 기상 부이의 개념 설계 (Conceptual Design of Moored Floating Meterological Buoy with LiDAR)

  • 김정록;이혜빈;조일형;경남호;부성윤
    • 한국해양공학회지
    • /
    • 제31권5호
    • /
    • pp.325-334
    • /
    • 2017
  • This paper reports the conceptual design process for a floating metocean data measurement system (FMDMS) for measuring wind information at sea. The FMDMS consists of three circular pontoons, columns, and a deck, which the LiDAR (lighting detection and ranging) is installed on. The dynamics of the mooring lines and motion responses of the FMDMS were analyzed using commercial codes such as WAMIT and OrcaFlex. One design criterion of the developed FMDMS was to maintain the motion responses as small as possible to enhance the LiDAR's accuracy. Starting with the preliminary design parameters such as the FMDMS's principal dimensions, weight, and important parameters of mooring system, we checked whether the FMDMS met the design requirements at each design stage, and then made modifications as necessary. The developed FMDMS showed a large pitch behavior for a small heave motion.