• 제목/요약/키워드: Montmorillonite Nanocomposite

검색결과 88건 처리시간 0.028초

The Effect of Clay Concentration on Mechanical and Water Barrier Properties of Chitosan-Based Nanocomposite Films

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.925-930
    • /
    • 2006
  • Chitosan-based nanocomposite films were prepared using a solution intercalation method incorporating varying amounts of organically modified montmorillonite (Cloisite 30B) from 0 to 30 wt%. The nanocomposite films prepared were optically clear despite a slight decrease in the transmittance due to the spatial distribution of nanoclay. X-ray diffraction patterns indicated that a certain degree of intercalation or exfoliation formed when the amount of clay in the film was low and that microscale tactoids formed when the clay content in the sample was high (more than 10 wt%). The tensile strength (TS) of the chitosan film increased when the clay was incorporated up to 10 wt% and then decreased with further increases in the clay content of the film. The elongation at break (E) increased slightly upon the addition of low levels of clay up to 5 wt% and then decreased with further increases in the amount of the clay in the film. The water vapor permeability (WVP) decreased exponentially with increasing clay content. The water solubility (WS) and swelling ratio (SR) of the nanocomposite films decreased slightly, indicating that the water resistance of the chitosan film increased due to the incorporation of the nanoclay.

유기 개질제의 종류와 혼합 시간에 따른 불포화 폴리에스터/ 몬모릴로나이트 나노복합체의 제조 및 특성 (Effect of Organic Modifiers and Mixing Times on the Properties of Unsaturated Polyester/Montmorillonite Nanocomposite)

  • 김호겸;이동호;서관호;김우식;박수영;민경은
    • 폴리머
    • /
    • 제27권6호
    • /
    • pp.589-595
    • /
    • 2003
  • 서로 다른 종류의 유기 개질제가 층간에 삽입된 세 종류의 몬모릴로나이트 (MMT)를 사용하여 불포화 폴리에스터 (UP)/MMT 나노복합체를 제조하고 유기 개질제의 화학적 구조와 각 성분들의 최종 혼합시간이 최종 나노복합체의 형태구조와 각종 물리적 특성에 미치는 영향을 조사하였다. 최종 혼합 시간은 MMT의 종류에 관계없이 나노복합체의 형태구조와 각종 물성에 별다른 영향을 미치지 못하는 것으로 확인되었으며, MMT의 유기 개질제에 두 개의 수산화기가 포함된 Cloisite 30B의 경우에는 나머지 두 종류의 MMT에 비해 형태구조나 고무 평탄 영역에서의 전단 모듈러스 및 굴곡강도 등은 우수한 것으로 나타났다 하지만 인장 강도나 열분해 거동, 유리 전이 온도 등은 별다른 차이를 보이지 않았으며, 또한 MMT의 함량에 따른 각종 특성의 선형적인 증가도 관찰되지 않았다.

UV 경화형 우레탄 아크릴레이트/MMT 나노복합체의 기계적 성질과 내흡수성에 대한 광개시제의 영향 (Effect of Photoinitiator System on Mechanical Properties and Water Sorption Behavior of Urethane Acrylate/MMT Nanocomposite by UV Radiation Curing)

  • 김호겸;민경은
    • 폴리머
    • /
    • 제39권2호
    • /
    • pp.256-260
    • /
    • 2015
  • 우레탄 아크릴레이트에 montmorillonite(MMT)를 첨가한 UV 경화형 나노복합체 제조 시 사용하는 광개시제의 종류에 따른 기계적 성질 및 내흡수성을 조사하였다. 1 wt%의 MMT가 첨가될 경우 가장 우수한 인장강도와 내흡수성을 나타내었으며, 광개시제의 경우 기존의 benzyldimethylketal 계열 광개시제와 bisacyl phosphine oxide 계열의 광개시제를 함께 사용할 경우 3 wt%의 MMT 함량에서도 사용된 UV 램프의 방출 파장대인 340~450 nm에서의 광흡수가 강화되어 나노복합체의 경화거동에 보다 효과적인 것으로 확인되었다.

Effect of Clay Type and Concentration on Optical, Tensile and Water Vapor Barrier Properties of Soy Protein Isolate/Clay Nanocomposite Films

  • Rhim, Jong-Whan
    • 한국포장학회지
    • /
    • 제15권3호
    • /
    • pp.99-104
    • /
    • 2009
  • Soy protein isolate (SPI)-based nanocomposite films with three different types of nanoclays, such as Cloisite $Na^+$, Cloisite 20A, and Cloisite 30B, were prepared using a solution casting method, and their optical, tensile, and water vapor barrier properties were determined to investigate the effect of nano-clay type on film properties. Among the tested nanoclays, Cloisite $Na^+$, a hydrophilic montmorillonite (MMT), exhibited the highest transparency with least opaqueness, the highest tensile strength, and the highest water vapor barrier properties, indicating Cloisite $Na^+$ is the most compatible with SPI polymer matrix to form nanocomposite films. The film properties of SPI/Cloisite $Na^+$ nanocomposite films were strongly dependent on the concentration of the clay. Film properties such as optical, tensile, and water vapor barrier properties improved significantly (p<0.05) as the concentration of clay increased. However, the effectiveness of addition of the clay reduced above a certain level (i.e., 5wt%), indicating that there is an optimum amount of clay addition to exploit the full advantage of nanocmposite films.

  • PDF

박리형 PCL/Clay 나노복합재료 제조와 특성 (Preparation of Exfoliated PCL/Clay Nanocomposite and Its Characterization)

  • 유성구;박대연;배광수;서길수
    • 폴리머
    • /
    • 제25권3호
    • /
    • pp.421-426
    • /
    • 2001
  • Montmorillonite (MMT)의 층간에 poly(${varepsilon}-caprolactone$) diol과 반응할 수 있는 -COOH기를 삽입하기 위하여 11-aminododecanoic acid를, 그리고 MMT의 층간거리를 넓혀주기 위하여 세칠트리메칠암모늄 브로마이드(CTMA)를 각각 삽입시켰다. 이렇게 개질된 MMT를 THF 용액상태에서 poly(${varepsilon}-caprolactone$) diol ($M_n{=2000}$)와 $80^{\circ}C$에서 4시간 동안 반응하였다. 반응 후, poly(${varepsilon}-caprolactone$) ($A_n{=80000}$)을 이 용액에 삽입하여 같은 온도에서 12시간 동안 혼합하였다. 이 용액을 실리콘 몰드에 부어 6$0^{\circ}C$ 진공 오븐에서 6시간 동안 건조하여 poly(${varepsilon}-caprolactone$) (PCL)/clay 나노복합재료 필름을 제조하였다. XRD와 TEM으로 확인한 결과 실리케이트 층이 완전히 박리된 박리형 나노복합재료임을 확인하였다. 그리고 MMT의 양에 따른 PCL/clay 나노복합재료의 기계적 성질과 열적 성질을 tensile tester와 DSC로 확인하였다. MMT가 PCL 매트릭스에 균일하게 분산되어 있어 복합재료의 영율이 향상되었으나, 인장강도에는 영향이 거의 없었다. 그리고 MMT의 양이 PCL에 대하여 3wt%까지 증가함에 따라 PCL의 결정화 온도가 증가하였다.

  • PDF

Preparation of Poly(methyl methacrylate)/Na-MMT Nanocomposites via in-Situ Polymerization with Macroazoinitiator

  • Jeong Han Mo;Ahn Young Tae
    • Macromolecular Research
    • /
    • 제13권2호
    • /
    • pp.102-106
    • /
    • 2005
  • Poly(methyl methacrylate) (PMMA)/sodium montmorillonite (Na-MMT) nanocomposites were prepared with a novel method utilizing a macroazoinitiator (MAI). To induce the intergallery polymerization of methyl methacrylate (MMA), the MAI containing a po1y(ethylene glycol) (PEG) segment was intercalated between the lamellae of Na-MMT and swelled with water to enhance the diffusion of MMA into the gallery. The structure of the nanocomposite was examined using X-ray diffraction and transmission electron microscopy, and the thermal properties were examined using differential scanning calorimetry and thermogravimetry. The PMMA/Na-MMT nanocomposite prepared by intergallery polymerization showed a distinct enhancement of its thermal properties; an approximately $30^{\circ}C$ increase in its glass transition temperature and an $80\sim100^{\circ}C$ increase in its thermal decomposition temperature for a $10\%$ weight loss.

Studies on Composite Filaments from Nanoclay Reinforced Polypropylene

  • Joshi, Mangala;Shaw, M.;Butola, B.S.
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.59-67
    • /
    • 2004
  • The development of high tenacity, high modulus monofilaments from Polypropylene/Clay nanocomposite has been investigated. Pure sodium montmorillonite nanoclay was modified using hexadecyl trimethyl ammonium bromide (HTAB) via an ion exchange reaction. Pure and modified clay were characterized through X-ray diffraction, FTIR and TGA. The modified clay was melt blended with polypropylene (PP) in presence of a swelling agent. Composite filaments from PP/Clay nanocomposite were prepared at different weight percentages of nanoclay and the spinning and drawing conditions were optimized. The filaments were characterized for their mechanical, morphological and thermal properties. The composite PP filaments with modified clay showed improved tensile strength, modulus and reduced elongation at break. The composite filaments with unmodified clay did not show any improvement in tensile strength but the modulus improved. The sharp and narrow X-ray diffraction peaks of PP/nanoclay composite filaments indicate increase in crystallinity in presence of modified clay at small loadings (0.5 %). The improved thermal stability was observed in filaments with modified as well as unmodified clays.

New Bio-based Polymeric Materials from Plant Oils

  • Uyama, Hiroshi
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.359-359
    • /
    • 2006
  • This study deals with development of new bio-based polymeric materials from epoxidized soybean oil (ESO). The curing of ESO in the presence of organophilic montmorillonite produced an oil polymer-clay nanocomposite ("green nanocomposite") showing flexible property. A green nanocomposite (oil polymer-silica nanocomposite) coatings were synthesized by an acidcatalyzed curing of ESO with 3-glycidoxypropyltrimethoxysilane. The curing of ESO in the presence of a biodegradable plastic, poly(caprolactone), produced a composite with semi-IPN structure. The mechanical properties of the composite was much superior to those of polyESO. These new oil-based materials have large potential for applications in various fields.

  • PDF

알파-피넨(alpha-pinene)이 함유된 스카티카증 치료용 나노복합체 개발 및 Miamiensis avidus에 대한 살충 효과 (Development of a Layered Nanocomposite Containing α-pinene to Treat Scuticociliatosis Caused by Miamiensis avidus)

  • 정철연;이숙경;윤주영;한양수;이제희
    • 한국수산과학회지
    • /
    • 제51권1호
    • /
    • pp.15-22
    • /
    • 2018
  • Alpha-pinene is an organic compound that possesses antibiotic and anti-parasitic activities. In this study, we developed a layered nanocomposite to combat against Miamiensis avidus which causes scuticociliatosis in the olive flounder Paralichthys olivaceus. We used a solid-solid reaction to develop the layered nanocomposite, incorporating-pinene ($C_{10}H_{16}$) into organically modified montmorillonite. We used cetyltrimethylammonium cations as the interlayered modifier for the adsorption of hydrophobic pinene molecules. The X-ray diffraction patterns of the nanocomposite structure showed that the basal spacing increased from $9.6{\AA}$ to $30.4{\AA}$. Interestingly, the fraction of ${\alpha}$-pinene released remained constant for a long period of time (228 h) due to the layered nature of the nanocomposite. Additionally, optical microscopic images of the treated scuticociliatids revealed that their cells were lysed, and this effect increased with the increasing concertration of ${\alpha}$-pinene. Histopathological assessment of ${\alpha}$-pinene nanocomposite-treated olive flounder gills revealed no significant morphological changes, even at the highest concentration of the ${\alpha}$-pinene. The nanocomposite has several advantages, including easy handling, high solubility, low toxicity, and the easy formulation of granules or powder, which improve the pesticidal activity of ${\alpha}$-pinene. Collectively, our results suggest that ${\alpha}$-pinene nanocomposite may be a useful treatment against scuticociliatosis.