• Title/Summary/Keyword: Monthly forecasting

Search Result 185, Processing Time 0.029 seconds

The Forecasting of Monthly Runoff using Stocastic Simulation Technique (추계학적 모의발생기법을 이용한 월 유출 예측)

  • An, Sang-Jin;Lee, Jae-Gyeong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.159-167
    • /
    • 2000
  • The purpose of this study is to estimate the stochastic monthly runoff model for the Kunwi south station of Wi-stream basin in Nakdong river system. This model was based on the theory of Box-Jenkins multiplicative ARlMA and the state-space model to simulate changes of monthly runoff. The forecasting monthly runoff from the pair of estimated effective rainfall and observed value of runoff in the uniform interval was given less standard error then the analysis only by runoff, so this study was more rational forecasting by the use of effective rainfall and runoff. This paper analyzed the records of monthly runoff and effective rainfall, and applied the multiplicative ARlMA model and state-space model. For the P value of V AR(P) model to establish state-space theory, it used Ale value by lag time and VARMA model were established that it was findings to the constituent unit of state-space model using canonical correction coefficients. Therefore this paper confirms that state space model is very significant related with optimization factors of VARMA model.

  • PDF

Empirical Study on the Forecasting of the Hotel Room Sales (호텔 객실판매 예측에 관한 실증적 연구 - 서울지역 특급호텔을 중심으로 -)

  • Han, Seung-Youb
    • Korean Business Review
    • /
    • v.4
    • /
    • pp.281-295
    • /
    • 1991
  • Nothing is more incorrect than forecasting. Nevertheless, forecasting is one of the most important business activities for the effective management. There has been rapid changes of the growth rate in every respect of the Korean hospitaity industry, especially the hotel industry, before and after the 88 Olympic Games. Therefore, the hoteliers shall be in need of more-than-ever accourate demand forecasting for the more systematic management and control. Under the above circumstances, this study suggested the best forecasting technique and method for the better sales and operations of the hotel rooms. The number of rooms sold is selected as a dependent variable of this study which is regarded as the best representative factor of measuring the growth rate of the rooms division performance of the hotels. The first step was to select the most verifiable independent variable diferently from the other countries or other areas of Korea. As a result, the number of foreign visitors was chosen. Empirical research, i.e. correlation and multiple regression analysis, shows that this independent variable has a strong relationship with the dependent variable told above. The second procedure was to estimate the number of rooms will be sold in 1991 on the basis of the formula calculated through the multiple regression analysis. Time series technique was conducted using the data of the number of foreign visitors by purpose of travel from 1987 to 1990. For the more correct forecasting, however, it would be desirable to adopt the data from 1989 considering the product or the industry life cycle. In addition, deeper analysis for the monthly or seasonal forecasting method is needed as a future research.

  • PDF

Development of a Hybrid Exponential Forecasting Model for Household Electric Power Consumption (가정용(家庭用) 전력수요예측(電力需要豫測)을 위(爲)한 혼합지표(混合指表) 모델의 개발(開發))

  • Hwang, Hak;Kim, Jun-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.7 no.1
    • /
    • pp.21-31
    • /
    • 1981
  • This paper develops a short term forecasting model for household electric power consumption in Seoul, which can be used for the effective planning and control of utility management. The model developed is based on exponentially weighted moving average model and incorporates monthly average temperature as an exogeneous factor so as to enhance its forecasting accuracy. The model is empirically compared with the Winters' three parameter model which is widely used in practice and the Box-Jenkins model known to be one of the most accurate short term forecasting techniques. The result indicates that the developed hybrid exponential model is better in terms of accuracy measured by average forecast error, mean squared error, and autocorrelated error.

  • PDF

Development of Rainfall-Runoff forecasting System (유역 유출 예측 시스템 개발)

  • Hwang, Man Ha;Maeng, Sung Jin;Ko, Ick Hwan;Ryoo, So Ra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.709-712
    • /
    • 2004
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. h short-term water demand forecasting technology will be developed fatting into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

Forecasting Demand for Food & Beverage by Using Univariate Time Series Models: - Whit a focus on hotel H in Seoul - (단변량 시계열모형을 이용한 식음료 수요예측에 관한 연구 - 서울소재 특1급 H호텔 사례를 중심으로 -)

  • 김석출;최수근
    • Culinary science and hospitality research
    • /
    • v.5 no.1
    • /
    • pp.89-101
    • /
    • 1999
  • This study attempts to identify the most accurate quantitative forecasting technique for measuring the future level of demand for food & beverage in super deluxe hotel in Seoul, which will subsequently lead to determining the optimal level of purchasing food & beverage. This study, in detail, examines the food purchasing system of H hotel, reviews three rigorous univariate time series models and identify the most accurate forecasting technique. The monthly data ranging from January 1990 to December 1997 (96 observations) were used for the empirical analysis and the 1998 data were left for the comparison with the ex post forecast results. In order to measure the accuracy, MAPE, MAD and RMSE were used as criteria. In this study, Box-Jenkins model was turned out to be the most accurate technique for forecasting hotel food & beverage demand among selected models generating 3.8% forecast error in average.

  • PDF

Forecasting the Wholesale Price of Farmed Olive Flounder Paralichthys olivaceus Using LSTM and GRU Models (LSTM (Long-short Term Memory)과 GRU (Gated Recurrent Units) 모델을 활용한 양식산 넙치 도매가격 예측 연구)

  • Ga-hyun Lee;Do-Hoon Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.2
    • /
    • pp.243-252
    • /
    • 2023
  • Fluctuations in the price of aquaculture products have recently intensified. In particular, wholesale price fluctuations are adversely affecting consumers. Therefore, there is an emerging need for a study on forecasting the wholesale price of aquaculture products. The present study forecasted the wholesale price of olive flounder Paralichthys olivaceus, a representative farmed fish species in Korea, by constructing multivariate long-short term memory (LSTM) and gated recurrent unit (GRU) models. These deep learning models have recently been proven to be effective for forecasting in various fields. A total of 191 monthly data obtained for 17 variables were used to train and test the models. The results showed that the mean average percent error of LSTM and GRU models were 2.19% and 2.68%, respectively.

Forecasting Foreign Visitors using SARIMAX Models with the Exogenous Variable of Demand Decrease (수요감소 요인 외생변수를 갖는 SARIMAX 모형을 이용한 관광수요 예측)

  • Lee, Geun-Cheol;Choi, Seong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, we consider the problem of forecasting the number of inbound foreigners visiting Korea. Forecasting tourism demand is an essential decision to plan related facilities and staffs, thus many studies have been carried out, mainly focusing on the number of inbound or outbound tourists. In order to forecast tourism demand, we use a seasonal ARIMA (SARIMA) model, as well as a SARIMAX model which additionally comprises an exogenous variable affecting the dependent variable, i.e., tourism demand. For constructing the forecasting model, we use a search procedure that can be used to determine the values of the orders of the SARIMA and SARIMAX. For the exogenous variable, we introduce factors that could cause the tourism demand reduction, such as the 9/11 attack, the SARS and MERS epidemic, and the deployment of THAAD. In this study, we propose a procedure, called Measuring Impact on Demand (MID), where the impact of each factor on tourism demand is measured and the value of the exogenous variable corresponding to the factor is determined based on the measurement. To show the performance of the proposed forecasting method, an empirical analysis was conducted where the monthly number of foreign visitors in 2019 were forecasted. It was shown that the proposed method can find more accurate forecasts than other benchmarks in terms of the mean absolute percentage error (MAPE).

Forecasting Exchange Rates: An Empirical Application to Pakistani Rupee

  • ASADULLAH, Muhammad;BASHIR, Adnan;ALEEMI, Abdur Rahman
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.339-347
    • /
    • 2021
  • This study aims to forecast the exchange rate by a combination of different models as proposed by Poon and Granger (2003). For this purpose, we include three univariate time series models, i.e., ARIMA, Naïve, Exponential smoothing, and one multivariate model, i.e., NARDL. This is the first of its kind endeavor to combine univariate models along with NARDL to the best of our knowledge. Utilizing monthly data from January 2011 to December 2020, we predict the Pakistani Rupee against the US dollar by a combination of different forecasting techniques. The observations from M1 2020 to M12 2020 are held back for in-sample forecasting. The models are then assessed through equal weightage and var-cor methods. Our results suggest that NARDL outperforms all individual time series models in terms of forecasting the exchange rate. Similarly, the combination of NARDL and Naïve model again outperformed all of the individual as well as combined models with the lowest MAPE value of 0.612 suggesting that the Pakistani Rupee exchange rate against the US Dollar is dependent upon the macro-economic fundamentals and recent observations of the time series. Further evidence shows that the combination of models plays a vital role in forecasting, as stated by Poon and Granger (2003).

Improving Forecasting Performance for Onion and Garlic Prices (양파와 마늘가격 예측모형의 예측력 고도화 방안)

  • Ha, Ji-Hee;Seo, Sang-Taek;Kim, Seon-Woong
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.4
    • /
    • pp.109-117
    • /
    • 2019
  • The purpose of this study is to present a time series model of onion and garlic prices. After considering the various time series models, we calculated the appropriate time series models for each item and then selected the model with the minimized error rate by reflecting the monthly dummy variables and import data. Also, we examined whether the predictive power improves when we combine the predictions of the Korea Rural Economic Institute with the predictions of time series models. As a result, onion prices were identified as ARMGARCH and garlic prices as ARXM. Monthly dummy variables were statistically significant for onion in May and garlic in June. Garlic imports were statistically significant as a result of adding imports as exogenous variables. This study is expected to help improve the forecasting model by suggesting a method to minimize the price forecasting error rate in the case of the unstable supply and demand of onion and garlic.