• Title/Summary/Keyword: Monte-Carlo methods

Search Result 949, Processing Time 0.025 seconds

Comparison of Statistical Methods for the Trend Analysis of Rainfall Data (강우자료의 경향성 분석을 위한 통계기법의 비교)

  • Kim, Soo-Young;Shin, Hong-Joon;Ahn, Hyun-Jun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.153-153
    • /
    • 2012
  • 기후변화는 강우량, 기온, 해수면온도 등 많은 수문기상학적 요소에 영향을 끼치고 있으며 이러한 영향에 대한 연구가 활발하게 진행되고 있다. 그 중에서도 수공구조물의 설계에 직접적으로 영향을 끼치는 강우특성에 대한 연구는 기후변화로 야기되는 강우의 비정상성(non-stationary)을 중심으로 이루어지고 있다. 현재 수문설계량은 강우량의 빈도해석을 통해 산정되는데, 이러한 빈도해석은 기본적으로 연최대강우자료의 정상성(stationary)과 독립성(independent)을 가정하고 이루어진다. 그러나 기후변화로 연최대강우자료에 경향성이나 변동성이 나타남에 따라 경향성과 변동성을 고려할 수 있는 빈도해석 기법의 개발에 대한 필요성이 증가하고, 실제로 2000년대에 들어서면서부터 우리나라뿐만 아니라 전 세계적으로 이루어지고 있다. 연최대강우자료의 정상성을 판단하기 위해 강우자료에 대한 경향성 분석을 수행하게 되는데, 경향성 분석을 위해 다양한 통계적 기법들이 적용되고 있다. 그러나 현재 경향성 분석방법의 적용에 대한 뚜렷한 기준이 없어 여러 가지의 경향성 분석 방법을 적용하여 다수의 분석방법별 결과를 종합하여 경향성 유무를 판단하고 있는 실정이며, 동일자료에 대해서도 연구에 따라 다른 결과가 나타나고 있다. 따라서 본 연구에서는 경향성 분석방법의 기각력을 비교검토하여 경향성 분석방법의 적용에 필요한 기준을 제시하고자 한다. 이를 위해 경향성 분석을 위해 널리 사용되고 있는 t-test, Mann-Kendall test, Hotelling-Pabst test를 비교하고자 한다. 여기에서 t-test는 매개변수를 사용하는 매개변수적 방법이고, Mann-Kendall test와 Hotelling-Pabst test는 비매개변수적 방법이다. 귀무가설의 경우 t-test는 경향성이 없다고 가정하고 있는데 반해, Mann-Kendall test와 Hotelling-Pabst test는 경향성이 있다고 가정하고 있다. 기각력 검토를 위해서는 Monte Carlo simulation을 이용하였다.

  • PDF

Analysis of Heat Loss with Mirror Array and Receiver Shapes on the Dish Solar Collector (반사경 배치 및 흡수기 형상에 따른 접시형 태양열 집열기의 열손실 해석)

  • Seo, Joo-Hyun;Ma, Dae-Sung;Kim, Yong;Kang, Yong-Heack;Seo, Tae-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • The radiative heat loss from a receiver of a dish solar collector is numerically investigated. The dish solar collector considered in this paper consists of a receiver and multi-faceted mirrors. In order to investigate the performance comparison of dish solar collectors, six different mirror arrays and four different receivers are considered. A parabolic- shaped perfect mirror of which diameter is 1.40 m is considered as the reference for the mirror arrays. The other mirror arrays which consist of twelve identical parabolic-shaped mirror facets of which diameter are 0.405 m are suggested for comparison. Their reflecting areas, which are 1.545 $m^{2}$, are the same. Four different receiver shapes are a conical, a dome, a cylindrical, and a unicorn type. The radiative properties of the mirror surfaces and the receiver surfaces may vary the thermal performance of the dish solar collector so that various surface properties are considered. In order to calculate the radiative heat loss in the receiver, two kinds of methods are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. The collector efficiency is defined as the results of the optical efficiency and the receiver efficiency. Based on the calculation, the unicorn type has the best performance in receiver shapes and the STAR has the best performance in mirror arrays except the perfect mirror.

Skin Dose Comparison of CyberKnife and Helical Tomotherapy for Head-and-Neck Stereotactic Body Radiotherapy

  • Yoon, Jeongmin;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Purpose: This study conducts a comparative evaluation of the skin dose in CyberKnife (CK) and Helical Tomotherapy (HT) to predict the accurate dose of radiation and minimize skin burns in head-and-neck stereotactic body radiotherapy. Materials and Methods: Arbitrarily-defined planning target volume (PTV) close to the skin was drawn on the planning computed tomography acquired from a head-and-neck phantom with 19 optically stimulated luminescent dosimeters (OSLDs) attached to the surface (3 OSLDs were positioned at the skin close to PTV and 16 OSLDs were near sideburns and forehead, away from PTV). The calculation doses were obtained from the MultiPlan 5.1.2 treatment planning system using raytracing (RT), finite size pencil beam (FSPB), and Monte Carlo (MC) algorithms for CK. For HT, the skin dose was estimated via convolution superposition (CS) algorithm from the Tomotherapy planning station 5.0.2.5. The prescribed dose was 8 Gy for 95% coverage of the PTV. Results and Conclusions: The mean differences between calculation and measurement values were $-1.2{\pm}3.1%$, $2.5{\pm}7.9%$, $-2.8{\pm}3.8%$, $-6.6{\pm}8.8%$, and $-1.4{\pm}1.8%$ in CS, RT, RT with contour correction (CC), FSPB, and MC, respectively. FSPB showed a dose error comparable to RT. CS and RT with CC led to a small error as compared to FSPB and RT. Considering OSLDs close to PTV, MC minimized the uncertainty of skin dose as compared to other algorithms.

Improvement of Statistics in Proton Beam Range Measurement by Merging Prompt Gamma Distributions: A Preliminary Study

  • Kim, Sung Hun;Park, Jong Hoon;Ku, Youngmo;Lee, Hyun Su;Kim, Young-su;Kim, Chan Hyeong;Jeong, Jong Hwi
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Background: To monitor proton beam in proton therapy, prompt gamma imaging systems are being developed by several research groups, and these systems are expected to improve the quality of the treatment and the patient safety. To apply the prompt gamma imaging systems into spot scanning proton therapy, the systems should be able to monitor the proton beam range of a spot with a small number of protons ( <$10^8$ protons), which is quite often not the case due to insufficient prompt gamma statistics. Materials and Methods: In the present study, we propose to improve prompt gamma statistics by merging the prompt gamma distributions of several individual spots into a new distribution. This proposal was tested by Geant4 Monte Carlo simulations for a multi-slit prompt gamma camera which has been developed to measure the proton beam range in the patient. Results and Discussion: The results show that the proposed method clearly enhance the statistical precision of beam range measurement. The accuracy of beam range verification is improved, within ~1.4 mm error, which is not achievable before applying the developed method. Conclusion: In this study, we tried to improve the statistics of the prompt gamma statistics by merging the prompt gamma distributions of multiple spots, and it was found that the merged distribution provided sufficient prompt gamma statistics and the proton beam range was determined accurately.

Supply Chain Coordination for Perishable Products under Yield and Demand Uncertainty: A Simulation Approach (수요와 수율의 불확실성을 고려한 공급망 조정)

  • Kim, Jin Min;Choi, Suk Bong
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.4
    • /
    • pp.959-972
    • /
    • 2018
  • Purpose: This study developed a simulation model that incorporates the uncertainty of demand and yield to obtain optimized results for supply chain coordination within environmental constraints. The objective of this study is to examine whether yield management for perishable products can achieve the goal of supply chain coordination between a single buyer and a single supplier under a variety of environmental conditions. Methods: We investigated the efficiency of a revenue-sharing contract and a wholesale price contract by considering demand and yield uncertainty, profit maximizing ratio, and success ratio. The implications for environmental variation were derived through a comparative analysis between the wholesale price contract and the revenue-sharing contract. We performed Monte Carlo simulations to give us the results of an optimized supply chain within the environments defined by the experimental factors and parameters. Results: We found that a revised revenue-sharing contracting model was more efficient than the wholesale price contract model and allowed all members of the supply chain to achieve higher profits. First, as the demand variation (${\sigma}$) increased, the profit of the total supply chain increased. Second, as the revenue-sharing ratio (${\Phi}$) increased, the profits of the manufacturer gradually decreased, while the profits of the retailer gradually increased, and this change was linear. Third, as the quality of yield increased, the profits of suppliers appear to increased. At last, success rate was expressed as the profit increased in the revenue-sharing contract compared to the profit increase in the wholesale price contract. Conclusion: The managerial implications of the simulation findings are: (1) a strategic approach to demand and yield uncertainty helps in efficient resource utilization and improved supply chain performance, (2) a revenue-sharing contract amplifies the effect of yield uncertainty, and (3) revised revenue-sharing contracts fetch more profits for both buyers and suppliers in the supply chain.

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Lee, Sooyoung;Bae, Seungbin;Lee, Hakjae;Kim, Kwangdon;Lee, Kisung;Kim, Kyeong-Min;Bae, Jaekeon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1764-1773
    • /
    • 2018
  • A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are $46.1{\times}46.1{\times}46.1mm^3$ and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4-2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.

Radiological Assessment of Environmental Impact of the IF-System Facility of the RAON

  • Lee, Cheol-Woo;Whang, Won Tae;Kim, Eun Han;Han, Moon Hee;Jeong, Hae Sun;Jeong, Sol;Lee, Sang-jin
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.58-65
    • /
    • 2021
  • Background: The evaluation of skyshine distribution, release of airborne radioactive nuclides, and soil activation and groundwater migration were required for radiological assessment of the impact on the environment surrounding In-Flight (IF)-system facility of the RAON (Rare isotope Accelerator complex for ON-line experiment) accelerator complex. Materials and Methods: Monte Carlo simulation by MCNPX code was used for evaluation of skyshine and activation analysis for air and soil. The concentration model was applied in the estimation of the groundwater migration of radionuclides in soil. Results and Discussion: The skyshine dose rates at 1 km from the facility were evaluated as 1.62 × 10-3 μSv·hr-1. The annual releases of 3H and 14C were calculated as 9.62 × 10-5 mg and 1.19 × 10-1 mg, respectively. The concentrations of 3H and 22Na in drinking water were estimated as 1.22 × 10-1 Bq·cm-3 and 8.25 × 10-3 Bq·cm-3, respectively. Conclusion: Radiological assessment of environmental impact on the IF-facility of RAON was performed through evaluation of skyshine dose distribution, evaluation of annual emission of long-lived radionuclides in the air and estimation of soil activation and groundwater migration of radionuclides. As a result, much lower exposure than the limit value for the public, 1 mSv·yr-1, is expected during operation of the IF-facility.

Efficient Determination of Iteration Number for Algebraic Reconstruction Technique in CT (CT의 대수적재구성기법에서 효율적인 반복 횟수 결정)

  • Joon-Min, Gil;Kwon Su, Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.141-148
    • /
    • 2023
  • The algebraic reconstruction technique is one of the reconstruction methods in CT and shows good image quality against noise-dominant conditions. The number of iteration is one of the key factors determining the execution time for the algebraic reconstruction technique. However, there are some rules for determining the number of iterations that result in more than a few hundred iterations. Thus, the rules are difficult to apply in practice. In this study, we proposed a method to determine the number of iterations for practical applications. The reconstructed image quality shows slow convergence as the number of iterations increases. Image quality 𝜖 < 0.001 was used to determine the optimal number of iteration. The Shepp-Logan head phantom was used to obtain noise-free projection and projections with noise for 360, 720, and 1440 views were obtained using Geant4 Monte Carlo simulation that has the same geometry dimension as a clinic CT system. Images reconstructed by around 10 iterations within the stop condition showed good quality. The method for determining the iteration number is an efficient way of replacing the best image-quality-based method, which brings over a few hundred iterations.

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

SUMRAY: R and Python Codes for Calculating Cancer Risk Due to Radiation Exposure of a Population

  • Michiya Sasaki;Kyoji Furukawa;Daiki Satoh;Kazumasa Shimada;Shin'ichi Kudo;Shunji Takagi;Shogo Takahara;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.90-99
    • /
    • 2023
  • Background: Quantitative risk assessments should be accompanied by uncertainty analyses of the risk models employed in the calculations. In this study, we aim to develop a computational code named SUMRAY for use in cancer risk projections from radiation exposure taking into account uncertainties. We also aim to make SUMRAY publicly available as a resource for further improvement of risk projection. Materials and Methods: SUMRAY has two versions of code written in R and Python. The risk models used in SUMRAY for all-solid-cancer mortality and incidence were those published in the Life Span Study of a cohort of the atomic bomb survivors in Hiroshima and Nagasaki. The confidence intervals associated with the evaluated risks were derived by propagating the statistical uncertainties in the risk model parameter estimates by the Monte Carlo method. Results and Discussion: SUMRAY was used to calculate the lifetime or time-integrated attributable risks of cancer under an exposure scenario (baseline rates, dose[s], age[s] at exposure, age at the end of follow-up, sex) specified by the user. The results were compared with those calculated using another well-known web-based tool, Radiation Risk Assessment Tool (RadRAT; National Institutes of Health), and showed a reasonable agreement within the estimated confidential interval. Compared with RadRAT, SUMRAY can be used for a wide range of applications, as it allows the risk projection with arbitrarily specified risk models and/or population reference data. Conclusion: The reliabilities of SUMRAY with the present risk-model parameters and their variance-covariance matrices were verified by comparing them with those of the other codes. The SUMRAY code is distributed to the public as an open-source code under the Massachusetts Institute of Technology license.