• 제목/요약/키워드: Monte-Carlo

검색결과 4,573건 처리시간 0.025초

A new approach to determine batch size for the batch method in the Monte Carlo Eigenvalue calculation

  • Lee, Jae Yong;Kim, Do Hyun;Yim, Che Wook;Kim, Jae Chang;Kim, Jong Kyung
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.954-962
    • /
    • 2019
  • It is well known that the variance of tally is biased in a Monte Carlo calculation based on the power iteration method. Several studies have been conducted to estimate the real variance. Among them, the batch method, which was proposed by Gelbard and Prael, has been utilized actively in many Monte Carlo codes because the method is straightforward, and it is easy to implement the method in the codes. However, there is a problem when utilizing the batch method because the estimated variance varies depending on batch size. Often, the appropriate batch size is not realized before the completion of several Monte Carlo calculations. This study recognizes this shortcoming and addresses it by permitting selection of an appropriate batch size.

Evaluation of Artificial Intelligence-Based Denoising Methods for Global Illumination

  • Faradounbeh, Soroor Malekmohammadi;Kim, SeongKi
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.737-753
    • /
    • 2021
  • As the demand for high-quality rendering for mixed reality, videogame, and simulation has increased, global illumination has been actively researched. Monte Carlo path tracing can realize global illumination and produce photorealistic scenes that include critical effects such as color bleeding, caustics, multiple light, and shadows. If the sampling rate is insufficient, however, the rendered results have a large amount of noise. The most successful approach to eliminating or reducing Monte Carlo noise uses a feature-based filter. It exploits the scene characteristics such as a position within a world coordinate and a shading normal. In general, the techniques are based on the denoised pixel or sample and are computationally expensive. However, the main challenge for all of them is to find the appropriate weights for every feature while preserving the details of the scene. In this paper, we compare the recent algorithms for removing Monte Carlo noise in terms of their performance and quality. We also describe their advantages and disadvantages. As far as we know, this study is the first in the world to compare the artificial intelligence-based denoising methods for Monte Carlo rendering.

Performing linear regression with responses calculated using Monte Carlo transport codes

  • Price, Dean;Kochunas, Brendan
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1902-1908
    • /
    • 2022
  • In many of the complex systems modeled in the field of nuclear engineering, it is often useful to use linear regression-based analyses to analyze relationships between model parameters and responses of interests. In cases where the response of interest is calculated by a simulation which uses Monte Carlo methods, there will be some uncertainty in the responses. Further, the reduction of this uncertainty increases the time necessary to run each calculation. This paper presents some discussion on how the Monte Carlo error in the response of interest influences the error in computed linear regression coefficients. A mathematical justification is given that shows that when performing linear regression in these scenarios, the error in regression coefficients can be largely independent of the Monte Carlo error in each individual calculation. This condition is only true if the total number of calculations are scaled to have a constant total time, or amount of work, for all calculations. An application with a simple pin cell model is used to demonstrate these observations in a practical problem.

Using the Monte Carlo method to solve the half-space and slab albedo problems with Inönü and Anlı-Güngör strongly anisotropic scattering functions

  • Bahram R. Maleki
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.324-329
    • /
    • 2023
  • Different types of deterministic solution methods were used to solve neutron transport equations corresponding to half-space and slab albedo problems. In these types of solution methods, in addition to the error of the numerical solutions, the obtained results contain truncation and discretization errors. In the present work, a non-analog Monte Carlo method is provided to simulate the half-space and slab albedo problems with Inönü and Anlı-Güngör strongly anisotropic scattering functions. For each scattering function, the sampling method of the direction of the scattered neutrons is presented. The effects of different beams with different angular dependencies and the effects of different scattering parameters on the reflection probability are investigated using the developed Monte Carlo method. The validity of the Monte Carlo method is also confirmed through the comparison with the published data.

Geant 4 Monte Carlo simulation for I-125 brachytherapy

  • Jie Liu;M.E. Medhat;A.M.M. Elsayed
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2516-2523
    • /
    • 2024
  • This study aims to validate the dosimetric characteristics of Low Dose Rate (LDR) I-125 source Geant4-based Monte Carlo code. According to the recommendation of the American Association of Physicists in Medicine (AAPM) task group report (TG-43), the dosimetric parameters of a new brachytherapy source should be verified either experimentally or theoretically before clinical procedures. The simulation studies are very important since this procedure delivers a high dose of radiation to the tumor with only a minimal dose affecting the surrounding tissues. GEANT4 Monte Carlo simulation toolkit associated brachytherapy example was modified, adapted and several updated techniques have been developed to facilitate and smooth radiotherapy techniques. The great concordance of the current study results with the consensus data and with the results of other MC based studies is promising. It implies that Geant4-based Monte Carlo simulation has the potential to be used as a reliable and standard simulation code in the field of brachytherapy for verification and treatment planning purposes.

저수지군으로부터 기대편익 산정을 위한 Monte Carlo 기법의 간략화 (Simplification of Monte Carlo Techniques for the Estimation of Expected Benefits in Stochastic Ananlysis of Multiple Reservoir Systems)

  • 이광만;고석구
    • 물과 미래
    • /
    • 제26권2호
    • /
    • pp.89-97
    • /
    • 1993
  • Monte Carlo 기법을 이용하여 저수지군으로부터 위험도나 신뢰도를 고려한 시스템 편익을 최적화하기 위해서는 수많은 모의발생 유입량 자료군을 이용하여야 한다. 본 연구에서는 저수지군 연계운영을 위한 모의 발생 유입량 자료를 시스템 목적함수나 운영기간들을 고려하여 전처리함으로써 수많은 모의 발생 자료군으로부터 이산화된 확율값과 운영기간을 갖는 극히 제한된 대표 유입량을 선택한다. 선택된 대표 유입량 자료를 사용하여 확정론적 최적화 기법에 의거 이산화된 위험도나 신뢰도 수준을 갖는 기대편익을 산정하게 된다. 이와 같은 기법을 5개 저수지를 고려한 한강수계 저수지 시스템으로부터 전처리 된 평가함수별 신뢰도 수준을 갖는 발전편익 산정에 적용하였으며, 적용결과 신뢰도를 고려한 기대편익은 전형적인 Monte Carlo 기법에 의한 결과와 비슷한 수중이었으나 훨씬 적은 계산만을 요구하였다.

  • PDF

산업재해 방지를 위한 New Austria Tunnel Method 수지에서 빔산란에 의한 Monte Carlo 시뮬레이션에 관한 연구 (A Study on Monte Carlo Simulation by beam scattering in Resin of New Austria Tunnel Method for Safety of Industrial Disaster)

  • 남상성;이주엽
    • 한국응용과학기술학회지
    • /
    • 제30권3호
    • /
    • pp.444-450
    • /
    • 2013
  • The influences of scatterer and absorber in turbid material by light scattering on silica fume of additive were interpreted for the scattered intensity and wavelength. The molecular properties have been studied by Monte Carlo simulation in resin of New Austria Tunnel Method. It has been found that the effects of optical properties in scattering media could be investigated by the optical parameters(${\mu}_s$, ${\mu}_a$,${\mu}_t$). Monte Carlo Simulation method for modelling of light transport in the civil engineering and construction field was applied. The results using a phantom were discussed that the distance from source to detector is closer, and scattering intensity is stronger with those obtained through Monte Carlo Simulation. It may also aid in designing the best model for coatings and corrosion for the durability of metal constructions.

몬테카르로 시뮬레이션에 의한 $SIC_w$/Al 복합재료의 피로수명에측 (Fatigue Life Prediction of $SIC_w$/Al Composites by Using the Monte-Carlo Simulation)

  • 안정주;권재도;김상태
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1552-1561
    • /
    • 1996
  • It requires uch time and cost to obtain the fatigue crack growth life and fatigue crack growth path morphlogy from the fatigue crack growth tests. In this study, the Monte-Carlo simulation program was developed to predict the fatigue crack growth lofe and fatigue crack growth path morphology of metal matrix composites. Fatigue crack growth lives of 5%, 10%, 15%, 20%, 25% and 30% $SiC_w$/Al composites were predicted by usign the Monte-Carlo Simulation. And the fatigue crack growth lives of 25% $SiC_w$/Al and Almatrix from Monte-carlo simulation were compared with fatigue life from experiments in order to verify the accuracy of Monte-Carlo Simulation program.

터보분자펌프의 성능해석에 관한 수치해석적 연구 (A numerical study of the performance of a turbomolecular pump)

  • 황영규;허중식
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3620-3629
    • /
    • 1996
  • In the free molecular flow range, the pumping performance of a turbomolecular pump has been predicted by calculation of the transmission probability which employs the integral method and the test particle Monte-Carlo method. Also, new approximate method combining the double stage solutions, so called double-approximation, is presented here. The calculated values of transmission probability for the single stage agree quantitatively with the previous known numerical results. For a six-stage pump, the Monte-Carlo method is employed to calculate the overall transmission probability for the entire set of blade rows. When the results of the approximate method combining the single stage solutions are compared with those of the Monte-Carlo method at dimensionless blade velocity ratio C=0.4, the previous known approximate method overestimates as much as 34% than does the Monte-Carlo method. But, the new approximate method gives more accurate results, whose relative error is 10% compared to the Monte-Carlo method, than does the previous approximate method.

몬테칼로법을 이용한 Ar기체의 전자수송계수에 관한 연구 (A study on the electron transport coefficients using monte carlo method in argon gas)

  • 하성철;전병훈
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권6호
    • /
    • pp.685-692
    • /
    • 1995
  • The electron transport coefficients in argon gas is studied over the range of E/N values from 85 to 566 Td by the Monte Carlo method considering the latest cross section data. The result of the Monte Carlo method analysis shows that the value of the electron transport coefficients such as the electron drift velocity, the ratio of the longitudinal and transverse diffusion coefficients to the mobility. It is also found that the electron transport coefficients calculated by the two-term approximation analysis agree well with those by Monte Carlo calculation. The electron energy distributions function were analysed in argon at E/N=283, and 566 Td for a case of the equilibrium region in the mean electron energy. A momentum transfer cross section for the argon atom which was consistent with both of the present electron transport coefficients was derived over the range of mean electron energy from 10.3 to 14.5 eV, also suggested as a set of electron cross section for argon atom. The validity of the results obtained has been confirmed by a Monte Carlo simulation method.

  • PDF